Hình lập phương A có cạnh dài gấp 5 lần hình lập phương B. Thể tích hình lập phương A gấp thể tích hình lập phương B...............lần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{12}=\dfrac{5\times11}{12\times11}=\dfrac{55}{132}\)
\(\dfrac{6}{11}=\dfrac{6\times12}{11\times12}=\dfrac{72}{132}\)
3 - 4x(25 - 2x) = 8x² + x - 300
3 - 100x + 8x² = 8x² + x - 300
-100x + 8x² - 8x² - x = -300 - 3
-101x = -303
x = -303 : (-101)
x = 3
Vậy S = {3}
ĐKXĐ: \(x\notin\left\{0;3;-3;-\dfrac{3}{2}\right\}\)
\(\dfrac{x^2-6}{x-3}+\dfrac{x^2+3x}{2x+3}\left(\dfrac{x}{x^2-9}-\dfrac{x+3}{x\left(x-3\right)}\right)\)
\(=\dfrac{x^2-6}{x-3}+\dfrac{x\left(x+3\right)}{2x+3}\cdot\left(\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x+3}{x\left(x-3\right)}\right)\)
\(=\dfrac{x^2-6}{x-3}+\dfrac{x\left(x+3\right)}{2x+3}\cdot\dfrac{x^2-\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2-6}{x-3}+\dfrac{x^2-x^2-6x-9}{\left(2x+3\right)\left(x-3\right)}\)
\(=\dfrac{x^2-6}{x-3}-\dfrac{3}{x-3}=\dfrac{x^2-9}{x-3}=x+3\)
a: Xét ΔCED vuông tại E và ΔCFD vuông tại F có
CD chung
\(\widehat{ECD}=\widehat{FCD}\)
Do đó: ΔCED=ΔCFD
=>CE=CF: DE=DF
Xét ΔCEK vuông tại E và ΔCFH vuông tại F có
CE=CF
\(\widehat{ECK}\) chung
Do đó: ΔCEK=ΔCFH
b: Xét ΔDEH vuông tại E và ΔDFK vuông tại F có
DE=DF
\(\widehat{EDH}=\widehat{FDK}\)
Do đó: ΔDEH=ΔDFK
=>DH=DK
=>D nằm trên đường trung trực của HK(1)
Ta có: CH=CK
=>C nằm trên đường trung trực của HK(2)
Ta có: MH=MK
=>M nằm trên đường trung trực của HK(3)
Từ (1),(2),(3) suy ra C,D,M thẳng hàng
Tỉ số giữa thể tích hình lập phương A và hình lập phương B là:
53=125
=>Thể tích hình lập phương A gấp thể tích hình lập phương B là 125 lần