Trên bảng viết các số 1/2015,2/2015......2014/2015.2015/2016 Mỗi lần biến đổi, xóa đi hai số a, b bất kỳ và thay bằng số a+b-5ab Hỏi sau 2014 lần thực hiện phép biến đổi trên bảng còn lại số nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
Thay x=1 , y=6 vào đừng thẳng (d),ta được:
(2m-1).1+m-2=6
<=>2m-1+m-2=6
<=>3m=9
<=>m=3
b. Song song với đường thẳng 2x + 3y – 5 = 0.
Ta có : 2x + 3y -5 =0
<=>3y=-2x+5
<=>y=\(\frac{-2}{3}\)x+\(\frac{5}{3}\)
Để (d) // y=\(\frac{-2}{3}\)x+\(\frac{5}{3}\)Thì ;
\(\hept{\begin{cases}2m-1=\frac{-2}{3}\\m-2\ne\frac{5}{3}\end{cases}}\)<=>\(\hept{\begin{cases}2m=\frac{1}{3}\\m\ne\frac{5}{3}+2\end{cases}}\)<=>\(\hept{\begin{cases}m=\frac{1}{6}\\m\ne\frac{11}{3}\end{cases}}\)<=>m=\(\frac{1}{6}\)
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
Ta có : x + 2y +1 =0
<=>2y=-x-1
<=>y=\(\frac{-1}{2}\)x + \(\frac{-1}{2}\)
Để (d) Vuông góc với y=\(\frac{-1}{2}\)x + \(\frac{-1}{2}\)thì:
(2m-1).\(\frac{-1}{2}\)=-1
<=>2m-1=2
<=>2m=3
<=>m=\(\frac{3}{2}\)
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:
⇔ y0 = (2m - 1)x0 + m -2 với mọi m
⇔ y0 = 2mx0 - x0 + m -2 với mọi m
⇔ y0 - 2mx0 + x0 - m +2 = 0 với mọi m
⇔ m(-2x0 - 1) + (y0 + x\(_0\)+2) = 0 với mọi m
<=>\(\hept{\begin{cases}-2x_0-1=0\\y_0+x_0+2=0\end{cases}}\)<=>\(\hept{\begin{cases}x_0=\frac{-1}{2}\\y_0=0-2+\frac{-1}{2}\end{cases}}\)<=>\(\hept{\begin{cases}x_0=\frac{-1}{2}\\y_0=\frac{-5}{2}\end{cases}}\)
Vậy điểm cố định mà (d) luôn đi qua là M(\(\frac{-1}{2}\);\(\frac{-5}{2}\))
trừ 2 pt về với vế :-10x=-20
x=2
thay x=2 vào pt1:-8+2y=-6
2y=2
y=1
Điều kiện vẫn là điều kiện: \(x\ge1\)
Phương trình đã cho \(\Leftrightarrow x^2-2x\sqrt{x}+\left(\sqrt{x}\right)^2+\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\left(x-\sqrt{x}\right)^2+\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)
Vì \(\left(x-\sqrt{x}\right)^2\ge0\)và \(\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\ge0\)
\(\Leftrightarrow\left(x-\sqrt{x}\right)^2+\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-\sqrt{x}=0\\\left(x-1\right)\left(x^2+x+1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\left(\sqrt{x}-1\right)=0\\\left(x-1\right)\left(x^2+x+1\right)=0\end{cases}}\)
Vì \(x^2+x+1=x^2+2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)nên ta chỉ xét 2 trường hợp:
TH1: \(\sqrt{x}=0\Leftrightarrow x=0\)(loại)
TH2: \(x-1=0\Leftrightarrow x=1\)(nhận)
Vậy phương trình đã cho có nghiệm là \(x=1\)
Mình nói thêm là mỗi hình vuông nhận một cạnh của bát giác làm cạnh của nó.