ai giải giúp em toàn bộ bài ở trên ảnh với, trình bày ra giúp em luôn thì càng tốt ạ, em đang cần gấp huhu 🥹
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì BI vuông góc với AC tại I, nên I thuộc AC.
Vì DK vuông góc với AC tại K, nên K thuộc AC.
Vì O là giao điểm của AC và BD nên O thuộc AC.
Suy ra I, O, K là các điểm thuộc AC; từ đó ba điểm I, O, K thẳng hàng
\(2.\left(x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\)
\(=\left(2x^2+y\right)\left(2x^2-y\right)\)
\(=\left(2x^2\right)^2-y^2\) Ta sử dụng \(\left[\left(a-b\right)\left(a+b\right)=a^2-b^2\right]\)
\(=2^2\left(x^2\right)^2-y^2\)
\(=2^2x^4-y^2\)
\(=4x^4-y^2\)
Vậy khai triển của biểu thức \(2.\left(2x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\) là: \(4x^4-y^2\)
\(2\left(x^2+\dfrac{1}{2}\right)\left(2x^2-y\right)\)
\(=2.2.\left(x^2+\dfrac{1}{2}\right)\left(x^2-\dfrac{1}{2}\right)\)
\(=4.\left(x^4-\dfrac{1}{4}\right)\)
a,(0,8)5:(0,4)6 = (\(\dfrac{0,8}{0,4}\))5 : 0,4 = 25:0,4 = 80
b, (-25)7: 323 - \(\dfrac{6103515625}{3276}\) = - 186264,5149
c, \(\dfrac{4^2.4^3}{2^{10}}\) = \(\dfrac{4^5}{2^{10}}\) = \(\dfrac{2^{10}}{2^{10}}\) = 1
d, \(\dfrac{9^5.5^7}{45^7}\) = \(\dfrac{9^5.5^7}{9^7.5^7}\) = \(\dfrac{1}{81}\)
\(\dfrac{\left(0.8\right)^5}{\left(0.4\right)^4}\)=\(\dfrac{\left(2.0,4\right)^5}{\left(0.4^4\right)}\)=\(\dfrac{2^5.\left(0.4\right)^5}{\left(0,4\right)^4}\)=\(2^5\).\(\left(0.4\right)^1\)=12,8
b)câu b không biết có sai đề không nhưng đáp án câu b là -186264,5149
c) \(\dfrac{4^2.4^3}{2^{10}}\)=\(\dfrac{4^5}{\left(2^2\right)^5}\)=\(\dfrac{4^5}{4^5}\)=1
d)\(\dfrac{9^5.5^7}{45^7}\)=\(\dfrac{9^5.5^5.5^2}{45^7}\)=\(\dfrac{45^5.5^2}{45^7}\)=\(\dfrac{5^2}{45^2}\)=\(\left(\dfrac{5}{45}\right)^2\)=\(\left(\dfrac{1}{9}\right)^2\)=\(\dfrac{1}{81}\)
Hôm nay olm.vn sẽ hướng dẫn các em cách giải phương trình nghiệm nguyên bằng nguyên lí kẹp. Cấu trúc đề thi hsg, thi chuyên thi violympic.
(3n + 1)2 = 9n2 + 2n + 1 < 9n2 + 3n + 4 \(\forall\) n \(\in\) N (1)
(3n + 2)2 = (3n + 2).(3n +2) = 9n2 + 12n + 4
⇒(3n + 2)2 ≥ 9n2 + 3n + 4 \(\forall\) n \(\in\) N (2)
Kết hợp (1) và (2) ta có: (3n +1)2 < 9n2 + 3n + 4 ≤ (3n + 2)2
Vì (3n + 1)2 và (3n +2)2 là hai số chính phương liên tiếp nên
9n2 + 3n + 4 là số chính phương khi và chỉ khi:
9n2 + 3n + 4 = (3n + 2)2 ⇒ 9n2 + 3n + 4 = 9n2 + 12n + 4
9n2 + 12n + 4 - 9n2 - 3n - 4 = 9n = 0 ⇒ n = 0
Vậy với n = 0 thì 9n2 + 3n + 4 là số chính phương.
\(A=\sqrt[]{1+2+3+...+\left(n-1\right)+n+...+3+2+1}\)
Ta có :
\(1+2+3+...+\left(n-1\right)=\left(n-1\right)+...+3+2+1=\left[\left(n-1\right)-1\right]+1\left(n-1+1\right):2\)
\(=\dfrac{\left(n-1\right)n}{2}\)
\(\Rightarrow A=\sqrt[]{\dfrac{\left(n-1\right)n}{2}.2+n}\)
\(\Rightarrow A=\sqrt[]{\left(n-1\right)n+n}\)
\(\Rightarrow A=\sqrt[]{n^2-n+n}\)
\(\Rightarrow A=\sqrt[]{n^2}\)
\(\Rightarrow A=n\left(n>0\right)\)
\(\Rightarrow dpcm\)
(2\(x\) + 3y)2
= (2\(x\) + 3y).(2\(x\) + 3y)
= 4\(x\)2 + 6\(xy\) + 6\(xy\) + 9y2
= 4\(x^2\) + 12\(xy\) + 9y2
(2x - 1)⁸ = (2x - 1)¹⁰
(2x - 1)¹⁰ - (2x - 1)⁸ = 0
(2x - 1)⁸.[(2x - 1)² - 1] = 0
(2x - 1)⁸ = 0 hoặc (2x - 1)² - 1 = 0
*) (2x - 1)⁸ = 0
2x - 1 = 0
2x = 1
x = 1/2
*) (2x - 1)² - 1 = 0
(2x - 1)² = 1
2x - 1 = 1 hoặc 2x - 1 = -1
**) 2x - 1 = 1
2x = 2
x = 1
**) 2x - 1 = -1
2x = 0
x = 0
Vậy x = 0; x = 1/2; x = 1
(2x - 1)8 = (2x - 1)10
=) (2x - 1)10 : (2x - 1)8 = 1
(2x - 1)2 = 1 =) = 12
=) 2x - 1 = 1
2x = 2
x = 1.
Lời giải:
\(\overline{0,x(y)}+\overline{0,y(x)}=\overline{0,x}+\overline{0,y}+\overline{0,0(y)}+\overline{0,0(x)}\)
\(=(x+y).0,1+\frac{y}{90}+\frac{x}{90}=(x+y).0,1+(x+y).\frac{1}{90}=9.0,1+9.\frac{1}{90}=1\)
(\(x\) - 3).(3 + \(x\))
= 3\(x\) + \(x^2\) - 9 - 3\(x\)
= \(x^2\) - 9
\(\left(x-3\right)\left(3+x\right)\\ =\left(x-3\right).3+\left(x-3\right).x\\ =3x-9+2x-3x\\ =3x-9-x\\ =3x-x+9\\ =2x+9.\)
Bài 1:
a, \(\dfrac{2}{3}\) + \(\dfrac{1}{5}\). \(\dfrac{10}{7}\)
= \(\dfrac{2}{3}\) + \(\dfrac{2}{7}\)
= \(\dfrac{20}{21}\)
b, \(\dfrac{7}{12}\) - \(\dfrac{27}{7}\). \(\dfrac{1}{18}\)
= \(\dfrac{7}{12}\) - \(\dfrac{3}{14}\)
= \(\dfrac{31}{84}\)
c, \(\dfrac{3}{10}\). \(\dfrac{-5}{6}\) - \(\dfrac{1}{8}\)
= - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\)
= - \(\dfrac{3}{8}\)
d, - \(\dfrac{4}{9}\): \(\dfrac{8}{3}\) + \(\dfrac{1}{18}\)
= - \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\)
= - \(\dfrac{1}{9}\)
e, {[(\(\dfrac{1}{2}\) - \(\dfrac{2}{3}\))2 : 2 ] - 1}. \(\dfrac{4}{5}\)
= {[ (-\(\dfrac{1}{6}\))2 : 2] - 1}. \(\dfrac{4}{5}\)
= { [\(\dfrac{1}{36}\) : 2] - 1}. \(\dfrac{4}{5}\)
= { \(\dfrac{1}{72}\) - 1}. \(\dfrac{4}{5}\)
=- \(\dfrac{71}{72}\).\(\dfrac{4}{5}\)
= -\(\dfrac{71}{90}\)