K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

có thể áp dụng luôn công thức tổng quát của btp nhé
Tổng quát \(\frac{a_1^2}{x_1}+\frac{a_2^2}{x_2}+...+\frac{a_n^2}{x_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{x_1+x_2+...+x_n}\)(với x1,x2,...xn >0 )
phải c/m nhé 

1 tháng 8 2016

BTP :\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(với mọi abxy, x,y>0) đây còn đc cọi bđt cauchy schwarz )
c/m k có gì khó. nhân chéo quy đồng ( tự c/m nhé )
Đặt \(A=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\)
Áp dụng liên tục btp ta được \(A\ge\frac{\left(1+1\right)^2}{a+b}+\frac{2^2}{c}+\frac{4^2}{d}\ge\frac{\left(1+1+2\right)^2}{a+b+c}+\frac{4^2}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)(dpcm)
dấu = xảy ra khi và chỉ khi a=b=c/2=d/4

1 tháng 8 2016

\(P=x+y+xy\Leftrightarrow P+1=\left(x+1\right)\left(y+1\right)=\left(\frac{b^2+c^2-a^2}{2bc}+1\right)\left(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1\right)\)
\(=\left(\frac{\left(b+c\right)^2-a^2}{2bc}\right)\left(\frac{a^2-\left(b-c\right)^2+\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}\right)=\frac{b^2+2bc+c^2-b^2+2bc-c^2}{2bc}=\frac{4bc}{2bc}=2\)
\(\Rightarrow P=1\)

1 tháng 8 2016

Nhận xét đề Toán. Có 2 cách giải cơ bản cho bài toán dạng này. 1 là thế trực tiếp x và y vào P và tính luôn, cách này quá thường, ai cũng nhìn ra, chỉ xài khi ta bí cách 2. Cách 2 là biến đổi P rồi mới thế.

Ở đây mình trình bày cách 2.

P = x + y + xy = x + (x +1) * y

    = x + P1

P1 =( \(\frac{b^2+c^2-a^2}{2bc}\)+ 1) * \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

     = \(\frac{\left(b+c\right)^2-a^2}{2bc}\)\(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

     = \(\frac{a^2-\left(b-c\right)^2}{2bc}\)

P = x + P1 = \(\frac{b^2+c^2-a^2}{2bc}\)\(\frac{a^2-\left(b-c\right)^2}{2bc}\)\(\frac{2bc}{2bc}\)= 1

Chúc bạn ngày càng học giỏi và xinh gái. 

31 tháng 7 2016

\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)(*)
Đặt \(y^2+3y+\frac{3}{2}=a\)
khi đó : (*) \(x^2=\left(a-\frac{3}{2}\right)\left(a+\frac{3}{2}\right)=a^2-\frac{9}{4}\Leftrightarrow\left(4x-4a\right)\left(x+a\right)=-9\)
Lập bảng là ok nhé 
 

31 tháng 7 2016

sao 1 bên 5 một bên 4 thế

Đặt \(a=\sqrt[3]{9+4\sqrt{5}};b=\sqrt[3]{9-4\sqrt{5}}\Rightarrow A=a+b\)

Ta có : \(A^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=a^3+b^3+3ab.A\)

\(=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\)

\(\Rightarrow A=18+3A\Leftrightarrow A^3-3A-18\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)\Rightarrow A=3\)

31 tháng 7 2016

Căn(19-6căn2) = Căn(18-2×3căn2+1)= Căn[(3căn2-1)2]=3căn2-1   (Vì 3căn2-1>0)

31 tháng 7 2016

đây là câu hỏi thuộc loại gì vậy bạn phải trình bày đầy đủ thì mới trả lời được chứ

30 tháng 7 2016

Vì a,b,c là các số tự nhiên lớn hơn 0 nên không mất tính tổng quát , ta giả sử \(a\ge b\ge c\ge1\)

Cần chứng minh \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\)

bđt \(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+abc}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+abc}\right)+\left(\frac{1}{1+c^2}-\frac{1}{1+abc}\right)\ge0\)

Ta sẽ chứng minh mỗi biểu thức trong ngoặc đều không nhỏ hơn 0.

Ta xét : \(\frac{1}{1+a^2}-\frac{1}{1+abc}=\frac{1+abc-1-a^2}{\left(1+a^2\right)\left(1+abc\right)}=\frac{a\left(bc-a\right)}{\left(1+a^2\right)\left(1+abc\right)}\)

Vì \(a\ge b\ge c\ge1\)nên \(\frac{a}{b}\ge1,\frac{1}{c}\le1\Rightarrow\frac{a}{bc}\le1\Rightarrow bc\ge a\Rightarrow bc-a\ge0\Rightarrow a\left(bc-a\right)\ge0\) 

 Do đó \(\frac{1}{1+a^2}-\frac{1}{1+abc}\ge0\)(1)

Tương tự với các biểu thức trong các ngoặc còn lại , ta cũng có \(\frac{1}{1+b^2}-\frac{1}{1+abc}\ge0\)(2)

\(\frac{1}{1+c^2}-\frac{1}{1+abc}\ge0\)(3)

Từ (1), (2), (3) ta có đpcm.

30 tháng 7 2016

Biết chết liền đó tỷ àk

30 tháng 7 2016

nếu cần thiết thì nhắn cho mình mình giải cho

27 tháng 7 2016

\(\sqrt{8-2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)

25 tháng 7 2016

Ta có  x – 2√x + 3 = (√x – 1)2 + 2.  Mà (√x – 1)2 ≥ 0 với mọi x ≥ 0 ⇒ (√x – 1)2 + 2 ≥ 2 với mọi x ≥ 0

⇒ \(A=\frac{1}{\left(\sqrt{X}-1\right)^2+2}\le\frac{1}{2}\)

Vậy GTLN của A = 1/2  ⇔ √x = 1 ⇔ x =1

25 tháng 7 2016

ủNG HỘ MK NHAK