Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm BD,AC. Đường thẳng MN cắt AD và BC theo thứ tự P,Q. Cm PA / PB = QD / QC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
\(\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)
\(\ge\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)
\(=\frac{25}{2}\)
tại a=b=1/2
thêm ít cách
Cách 1:
Áp dụng BĐT bunhiacopxki ta được:
\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(a+\frac{1}{b}\right)+\left(b+\frac{1}{a}\right)\right]^2\)
\(\Leftrightarrow\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)(1)
Ta có:\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)( tự CM nha )
ÁP dụng BĐT AM-GM ta có:
\(\sqrt{ab}\le\frac{a+b}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge4\)(2)
Thay (2) vào (1) ta được:
\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge25\)
\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\left(đpcm\right)\)
Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Cách 2:
Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
Ta có: \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\)
\(=a^2+\frac{2a}{b}+\frac{1}{16b^2}+\frac{15}{16b^2}+b^2+\frac{2b}{a}+\frac{1}{16a^2}+\frac{15}{16a^2}\)
\(=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\left(\frac{2a}{b}+\frac{2b}{a}\right)+\left(\frac{15}{16b^2}+\frac{15}{16a^2}\right)\)
ÁP dụng BĐT AM-GM ta có:
\(a^2+\frac{1}{16a^2}\ge2\sqrt{a^2.\frac{1}{16a^2}}\ge\frac{1}{2}\)(3)
\(b^2+\frac{1}{16b^2}\ge2\sqrt{b^2.\frac{1}{16b^2}}\ge\frac{1}{2}\)(4)
\(\frac{2a}{b}+\frac{2b}{a}\ge2\sqrt{\frac{2a}{b}.\frac{2b}{a}}\ge4\)(5)
\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge2\sqrt{\frac{15.15}{16.16a^2b^2}}=\frac{15}{8ab}\)(1)
ÁP dụng BĐT AM-GM ta có:
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)(2)
Thay (2) vào (1) ta được:
\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge\frac{15}{2}\)(6)
Cộng (3)+(4)+(5)+(6) ta được:
\(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}+4=\frac{25}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Cách 3:Làm tắt thui ạ
Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\ge2ab+\frac{2}{ab}+4\)
\(P\ge2\left(ab+\frac{1}{ab}\right)+4\)
\(P\ge2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)+4\)
giống cách 2 rồi làm nốt
A B C D G H F E K O
Gọi K là giao điểm của AB và EF
O là giao điểm của AC và BD => OB = OD vì ABCD là hình chữ nhật
Ta có: EK // OB => \(\frac{EK}{OB}=\frac{AE}{AO}\)
EF//OD => \(\frac{EF}{OD}=\frac{AE}{AO}\)
=> \(\frac{EK}{OB}=\frac{EF}{OD}\) mà OD = OB
=> EK = EF mặt khác EH = EB ( H đối xứng với B qua E )
=> KBFH là hình bình hành
=> KB //=HF ( 1)
Ta lại có: KB //GD ( vì G thuộc DC ; AB //DC ; ABCD là hình chữ nhật )
và GK // BD ( giả thiết )
=> GKBD là hình bình hành
=> KB // = GD ( 2)
Từ ( 1) và (2) => HF // = GD
=> HFDG là hình bình hành có: ^FDG = 90 độ ( kề bù ^ADC = 90 độ )
=> HFDG là hình chữ nhật
=> HD = FG ( hai đường chéo bằng nhau)
Câu thơ đã sử dụng biện pháp ẩn dụ một cách khéo léo.
- Nó bày tỏ niềm uất hận, bế tắc khi chưa ra khỏi chốn lao tù:
+ Nhưng tiếng chim tu hú ở cuối bài thơ lại khiến cho người tù cảm thấy ngột ngạt, bực bội, khó chịu và khó chấp nhận, chìm đắm vào sự đau khổ vì chưa thể thoát ra khỏi cảnh tù đày, giam cầm “chết uất thôi”.
+ Bên ngoài tiếng tu hú vẫn không ngừng vang lên, niềm uất hận trong lòng tác giả vẫn cứ thế kéo dài.
Gọi x là số lần tăng lên của vi khuẩn sau 30 phút
Ban đầu chỉ có 50 con => Sau 30 phút: 50x con
=> Sau 1 h : 50x2 con . => Sau 1h 30 p : 50x3 con
=> Sau 2h: 50x4 con
.....
=> Sau 24h : 50x48 con
Theo bài ra : Sau 2h vi khuẩn là 4050 con
Do đó ta có pt: 50x4= 4050 <=> x = 3
Vậy sau 1 ngày ( = 24 h ) số vi khuẩn sẽ là: 50.x48 = 50.348 con