Cho tam giác ABC,góc A tù .trên cạnh AC lấy 2 điểm D và E(D nằm giữa A và E).CMR BA<BD<BE<BC
MK cần gấp giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{A}:\widehat{B}:\widehat{C}=3:5:7\)\(\Rightarrow\frac{\widehat{A}}{3}=\frac{\widehat{B}}{5}=\frac{\widehat{C}}{7}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\frac{180^o}{15}=12^o\)
\(\Rightarrow\widehat{A}=12^o.3=36^o\); \(\widehat{B}=12^o.5=60^o\); \(\widehat{C}=12^o.7=84^o\)
Ta có: \(\widehat{A}< \widehat{B}< \widehat{C}\left(36^o< 60^o< 84^o\right)\)\(\Rightarrow BC< AC< AB\)
Vậy \(BC< AC< AB\)
Vì tam giác ABc cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)( tính chất ) hay \(\widehat{EBC}=\widehat{ACB}\)
Có \(\widehat{EBC}=\widehat{ACB}\)
\(\widehat{ECB}< \widehat{ACB}\)( vì \(\widehat{ECB}\varepsilon\widehat{ACB}\))
=> \(\widehat{EBC}>\widehat{ECB}\)
Xét tam giác EBC có
\(\widehat{EBC}>\widehat{ECB}\) ( cmt)
=> EB > EC ( quan hệ góc - cạnh trong tam giác )
Dấu hiệu: Số lỗi chính tả trong một bài kiểm tra môn tiếng Anh của mỗi học sinh lớp 7A.
Số các giá trị của dấu hiệu là: 44
Các giá trị khác nhau là: 9
Bảng tần số:
Giá trị(x) | 4 | 3 | 6 | 9 | 7 | 5 | 10 | 2 | 1 |
Tần số(n) | 14 | 7 | 8 | 1 | 1 | 7 | 1 | 4 | 1 |
N = 44
Nhận xét: Có 4 lỗi chính tả là cao nhất và 1 lỗi chính tả là thấp nhất
- Không có bạn nào có 0 lỗi chính tả
Biểu đồ đoạn thẳng: bạn tự vẽ nhé!
P/s: Mình làm theo ý hiểu của mình và mình cũng không chắc nhé, mong bạn thông cảm!
Chúc bạn học tốt !!!
Ta thấy: 442=1936
452=2025
=>abcd=1936 (vì 1936<2020; 2025>2020)
=>1936+ef=2020
=>ef=84
Vậy a=1;b=9;c=3;d=6;e=8;f=4.
a) Xét tam giác AHB và tam giác AHC có:
AH:chung
AHC = AHB = 90 độ
AB = AC (gt)
=> tam giác AHB = tam giác AHC (ch-cgv)
b)Xét hai tam giác AMH và tam giác ANH có:
AMH = AMN = 90 độ
AH: chung
MAH = NAH (vì trong tam giác cân đường cao cũng đồng thời là đường phân giác)
=> tam giác AMH = tam giác ANH (ch-gn)
=> AM = AN (2 cạnh tương ứng) => AMN cần tại A.
c) Tam giác AMN cân có AH là đường phân giác => AH cũng là đường cao => AH vuông góc với MN.
Mà AH vuông góc với BC => MN // BC.
d) Tam giác BMH vuông tại M => BM2 + MH2 = BH2
<=> AM2 + MH2 + BM2 = AN2 + BH2 (Vì AM = AN)
<=> AH2 + BM2 = AN2 + BH2 (Vì AM2 + MH2 = AH2)
Vậy => đpcm.
A B C H M N 1 2
a, Xét \(\Delta AHB\) vuông tại \(H\) và \(\Delta AHC\) vuông tại \(H\) có:
\(\widehat{ABH}=\widehat{ACH}\left(\Delta ABC-cân-tại-A\right)\)
\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\)
b, Xét \(\Delta AMH\) vuông tại \(M\) và \(\Delta ANH\) vuông tại \(N\) có:
\(\widehat{A1}=\widehat{A2}\left(\Delta ABH=\Delta ACH\right)\)
\(AH\) chung
\(\Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right)\)
\(\Rightarrow AM=AN\left(2c.t.ứ\right)\)
\(\Rightarrow\Delta AMN\) cân tại \(A\left(1\right)\)
c, Từ \(\left(1\right)\Rightarrow\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Ta có: \(\Delta ABC\) cân tại \(A\)
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
Từ \(\left(2\right)\left(3\right)\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà: 2 góc đang ở vị trí đồng vị nên:
\(\Rightarrow MN//BC\)
d, Xét \(\Delta BMH\) và \(\Delta CNH\) vuông tại \(M;N\) có:
\(\widehat{HBM}=\widehat{HCN}\left(\Delta ABC-cân-tại-A\right)\)
\(BH=CH\left(\Delta AHB=\Delta AHC\right)\)
\(\Rightarrow\Delta BMH=\Delta CNH\left(ch-gn\right)\)
\(\Rightarrow MH=NH\left(2c.t.ứ\right)\)
\(\Rightarrow NH^2=MH^2\)
\(\Rightarrow BH^2-MB^2=AH^2-AN^2\)
\(\Rightarrow AH^2+BM^2=AN^2+BH^2\left(đpcm\right)\)
Ta có : Thay x,y tỉ lệ vào 4 và 3 thì : x/4 = y/3
Theo định lí Py-ta-go thì : x2 + y2 = 52 (*)
Đặt : x/4 = y/3 = t => x=4.t và y=3.t
Cũng theo định lí Py-ta-go
Thay x,y vào (*) ta có:
(4.t)2 + (3.t)2 . t2 = 52
=> { 4 + 3 }2 . t2 = 52
Do 4^2+3^2 > 5^2
Nên : t^2 = 1 => t = 1
=> x = 4.1=4 y = 3.1=3
3a 5 4a
Gọi cạnh góc vuông lần lượt là: 4a , 3a (a\(\in\) N)
Ta có :
( 3a )2 + ( 4a )2 = 52
=> 25a2 = 25
=> a2 = 1
=> a = 1
\(\Leftrightarrow\)2 cạnh góc vuông có độ dài lần lượt là : 3 ;4
xin lỗi mình học lớp 5
cậu học lớp mấy vậy?
A B C D E
Xét \(\Delta ABD\)có \(\widehat{A}\)tù \(\Rightarrow BA< BD\)(1); \(\widehat{ADB}< 90^o\)
\(\Rightarrow\widehat{BDE}>90^o\)\(\Rightarrow\Delta BDE\)tù tại D \(\Rightarrow BD< BE\)(2); \(\widehat{BED}< 90^o\)
\(\Rightarrow\widehat{BEC}>90^o\)\(\Rightarrow\Delta BEC\)tù tại E \(\Rightarrow BE< BC\)(3)
Từ (1), (2), (3) \(\Rightarrow BA< BD< BE< BC\left(đpcm\right)\)