Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A\left(x\right)=2x^3-6x^2-5\left(x^2-2x-5\right)\)
\(=2x^3-6x^2-5x^2+10x+25\)
\(=2x^3-11x^2+10x+25\)
\(B\left(x\right)=x^3-3\left(x^3-2x^2-5x\right)\)
\(=x^3-3x^3+6x^2+15x\)
\(=-2x^3+6x^2+15x\)
b: \(A\left(x\right)=2x^3-11x^2+10x+25\)
Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là 25
c: A(x)-C(x)=B(x)
=>C(x)=A(x)-B(x)
\(=2x^3-11x^2+10x+25+2x^3-6x^2-15x\)
\(=4x^3-17x^2-5x+25\)
d: Đặt P(x)=0
=>B(x)+2x3=0
=>\(-2x^3+6x^2+15x+2x^3=0\)
=>\(6x^2+15x=0\)
=>3x(2x+5)=0
=>x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
e: Chiều dài hình chữ nhật là: \(\dfrac{4y^2+4y-3}{2x-1}\left(cm\right)\)
f: Chiều rộng của hình hộp là:
\(\dfrac{3x^3+8x^2-45x-40}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{3x^3+8x^2-45x-40}{x^2+6x+5}\)
\(=\dfrac{3x^3+18x^2+15x-10x^2-60x-50+10}{x^2+6x+5}\)
\(=3x-10+\dfrac{10}{x^2+6x+5}\left(cm\right)\)
a: Thể tích của bể nước là:
\(2\cdot1,5\cdot1,2=3,6\left(m^3\right)=3600\left(lít\right)\)
b: thể tích nước đã chảy vào bể là:
4x600=2400(lít)=2,4m3
Chiều cao của mực nước là:
2,4:2:1,5=1,2:1,5=0,8(m)
ΔABC cân tại A
mà AD là đường trung tuyến
nên AD\(\perp\)BC
ΔADB vuông tại D
=>\(DA^2+DB^2=AB^2\)
ΔADB vuông tại D có DE là đường cao
nên \(S_{ADB}=\dfrac{1}{2}\cdot DA\cdot DB=\dfrac{1}{2}\cdot DE\cdot AB\)
=>\(DA\cdot DB=DE\cdot AB\)
\(\left(DE+AB\right)^2-\left(DA+DB\right)^2\)
\(=DE^2+AB^2+2\cdot DE\cdot AB-DA^2-DB^2-2\cdot DA\cdot DB\)
\(=DE^2+AB^2-AD^2-BD^2+2\cdot DE\cdot AB-2\cdot DE\cdot AB\)
\(=DE^2>0\)
=>\(\left(DE+AB\right)^2>\left(DA+DB\right)^2\)
=>DE+AB>DA+DB
Cho L(x) = 0
x² - 12x + 35 = 0
x² - 5x - 7x + 35 = 0
(x² - 5x) - (7x - 35) = 0
x(x - 5) - 7(x - 5) = 0
(x - 5)(x - 7) = 0
x - 5 = 0 hoặc x - 7 = 0
*) x - 5 = 0
x = 5
*) x - 7 = 0
x = 7
Vậy nghiệm của đa thức L(x) là: x = 5; x = 7
a: Xét ΔCED vuông tại E và ΔCFD vuông tại F có
CD chung
\(\widehat{ECD}=\widehat{FCD}\)
Do đó: ΔCED=ΔCFD
=>CE=CF: DE=DF
Xét ΔCEK vuông tại E và ΔCFH vuông tại F có
CE=CF
\(\widehat{ECK}\) chung
Do đó: ΔCEK=ΔCFH
b: Xét ΔDEH vuông tại E và ΔDFK vuông tại F có
DE=DF
\(\widehat{EDH}=\widehat{FDK}\)
Do đó: ΔDEH=ΔDFK
=>DH=DK
=>D nằm trên đường trung trực của HK(1)
Ta có: CH=CK
=>C nằm trên đường trung trực của HK(2)
Ta có: MH=MK
=>M nằm trên đường trung trực của HK(3)
Từ (1),(2),(3) suy ra C,D,M thẳng hàng
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
=>MH=MK
b: Ta có: MH=MK
mà MK<MC(ΔMKC vuông tại K)
nên MH<MC
c: ΔKAM vuông tại K
=>AM là cạnh lớn nhất trong ΔKAM
=>MK<AM
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{HAB}=\widehat{HAC}\)
mà \(\widehat{DHA}=\widehat{HAC}\)(DH//AC)
nên \(\widehat{DHA}=\widehat{DAH}\)
=>ΔDAH cân tại D
b: Ta có: \(\widehat{DHA}+\widehat{DHB}=90^0\)
\(\widehat{DAH}+\widehat{DBH}=90^0\)
mà \(\widehat{DHA}=\widehat{DAH}\)(ΔDAH cân tại D)
nên \(\widehat{DHB}=\widehat{DBH}\)
=>DH=DB
=>DA=DB
=>D là trung điểm của AB
Xét ΔABC có
AH,CD là các đường trung tuyến
AH cắt CD tại G
Do đó: G là trọng tâm của ΔABC
c: Xét ΔABC có
G là trọng tâm
Do đó: BG cắt AC tại trung điểm K của AC
TA có:
mà AB=AC
nên AD=DB=AK=KC
Xét ΔDBC và ΔKCB có
DB=KC
BC chung
Do đó: ΔDBC=ΔKCB
=>DC=BK
Xét ΔBAC có
G là trọng tâm
BK là đường trung tuyến
Do đó:
=>2BK=3BG
Trên tia đối của tia KB, lấy E sao cho KB=KE
Xét ΔKAE và ΔKCB có
KA=KC
(hai góc đối đỉnh)
KE=KB
Do đó: ΔKAE=ΔKCB
=>AE=CB
AH+3BG=AH+2BK=AH+BE<AB+BE<(AB+AE+AB)=AB+AC+BC
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
b: Ta có: ΔEBC=ΔDCB
=>\(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
Xét ΔBHC có HB+HC>BC
=>BC<2BH
=>\(BH>\dfrac{BC}{2}\)