K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔEHF vuông tại H

=>\(HE^2+HF^2=EF^2\)

=>\(HE=\sqrt{5^2-3^2}=4\left(cm\right)\)

Xét ΔHEG vuông tại H và ΔHFE vuông tại H có

\(\widehat{HEG}=\widehat{HFE}\left(=90^0-\widehat{G}\right)\)

Do đó: ΔHEG~ΔHFE

=>\(\dfrac{HE}{HF}=\dfrac{HG}{HE}\)

=>\(HE^2=HF\cdot HG\)

=>\(HG=\dfrac{4^2}{3}=\dfrac{16}{3}\left(cm\right)\)

ΔEHG vuông tại H

=>\(HE^2+HG^2=EG^2\)

=>\(EG=\sqrt{\left(\dfrac{16}{3}\right)^2+4^2}=\dfrac{8\sqrt{13}}{3}\left(cm\right)\)

(3x-5)(2y+7)=100

=>(3x-5;2y+7)\(\in\){(1;100);(100;1);(-1;-100);(-100;-1);(2;50);(50;2);(-2;-50);(-50;-2);(4;25);(25;4);(-4;-25);(-25;-4);(5;20);(20;5);(-5;-20);(-20;-5);(10;10);(-10;-10)}

=>(3x;2y)\(\in\){(6;93);(105;-6);(4;-107);(-95;-8);(7;43);(55;-5);(3;-57);(-45;-9);(9;18);(30;-3);(1;-32);(-20;-11);(10;13);(25;-2);(0;-27);(-15;-12);(15;3);(-5;-17)}

=>(x;y)\(\in\){(2;93/2);(35;-3);(4/3;-107/2);(-95/3;-4);(7/3;43/2);(55/3;-5/2);(1;-57/2);(-15;-9/2);(3;9);(10;-3/2);(1/3;-16);(-20/3;-11/2);(10/3;13/2);(25/3;-1);(0;-27/2);(-5;-6);(5;3/2);(-5/3;-17/2)}

11 tháng 8 2024

(3x - 5)(2y + 7) = 100

Ta có: 100 = 1 x 100 = 2 x 50 = 4 x 25

Do 2y + 7 là số lẻ nên 2y + 7 chỉ có thể = 1 hoặc 25

Trường hợp 1: 2y + 7 = 1

⇒ 2y = 1 - 7

⇒ 2y = -6

⇒ y = (-6) : 2

⇒ y = -3

Vậy 3x - 5 = 100

⇒ 3x = 100 + 5

⇒ 3x = 105

⇒ x = 105 : 3

⇒ x = 35

Trường hợp 2: 2y + 7 = 25

⇒ 2y = 25 - 7

⇒ 2y = 18

⇒ y = 18 : 2

⇒ y = 9

Vậy 3x - 5 = 4

⇒ 3x = 4 + 5

⇒ 3x = 9

⇒ x = 9 : 3

⇒ x = 3

Vậy (x; y) ϵ {(35; -3); (3; 9)}

11 tháng 8 2024

`139 . 19 + 19 - 40 . 19`

`= 139 . 19 + 19 . 1 - 40 . 19`

`= 19 . (139 + 1 - 40) `

`= 19 . 100`

` = 1900`

11 tháng 8 2024

139.19 + 19 - 40.9

 = 19.( 139 + 1 - 40)

 = 19.100

 = 1900

Mik nghĩ thế đúng và nhanh òi ~~~ sai thì cho mik xin lỗi nho

a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAHB

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AE\cdot AB\left(1\right)\)

Xét ΔAFH vuông tại F và ΔAHC vuông tại H có

\(\widehat{FAH}\) chung

Do đó: ΔAFH~ΔAHC

=>\(\dfrac{AF}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AF\cdot AC\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

b: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(HA^2=HE^2+HF^2\)

Xét ΔEHA vuông tại H và ΔEBH vuông tại E có

\(\widehat{EHA}=\widehat{EBH}\left(=90^0-\widehat{HAE}\right)\)

Do đó: ΔEHA~ΔEBH

=>\(\dfrac{EH}{EB}=\dfrac{EA}{EH}\)

=>\(EH^2=EA\cdot EB\)

Xét ΔFHA vuông tại F và ΔFCH vuông tại F có

\(\widehat{FHA}=\widehat{FCH}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔFHA~ΔFCH

=>\(\dfrac{FH}{FC}=\dfrac{FA}{FH}\)

=>\(FH^2=FA\cdot FC\)

\(HA^2=HE^2+HF^2=EA\cdot EB+FA\cdot FC\)

11 tháng 8 2024

6x=59-25

6x= 34

x=34:6

x=17/3

NV
11 tháng 8 2024

\(6x-25=59\)

\(6x=59+25\)

\(6x=84\)

\(x=84:6\)

\(x=14\)

11 tháng 8 2024

1234567890^2

11 tháng 8 2024

1.524157875x1018

11 tháng 8 2024

S = 1 x 2+2 x 3+3 x 4+...+25 x 26

3S = 1 x 2 x 3 +2 x 3 x (4 - 1) +3 x 4 x (5 - 2) +...+25 x 26 x (27 - 24)

3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + ... + 25 x 26 x 27 - 24 x 25 x 26

3S = 25 x 26 x 27

3S = 17550

S = 5850

12 tháng 8 2024

Ta có: `997.1001 `

`= (999 - 2) . (999 + 2) `

`= 999 . 999 - 2 . 999 + 2 . 999 - 4`

`= 999 . 999 - 4 < 999 . 999`

Vậy  `997.1001  < 999 . 999`

12 tháng 8 2024

\(999.999=\left(1000-1\right)\left(1000-1\right)=\left(1000-1\right)^2=1000^2-2.1000+1\)

\(997.1001=\left(1000-3\right)\cdot\left(1000+1\right)=1000^2-2.1000-2\)

mà \(1>-2\Rightarrow1000^2-2.1000+1>1000^2-2.1000-2\)

\(\Rightarrow999.999>997.1001\)

12 tháng 8 2024

Ta có:

\(290=2\cdot5\cdot29\\ 895=5\cdot197\\ 578=2\cdot17^2\\ =>ƯCLN\left(290;895;578\right)=1\)

12 tháng 8 2024

\(290=2.5.29\)

\(895=5.179\)

\(578=2.17^2\)

Nên không tồn tại \(UCLN\left(290;895;578\right)\)