cho tam giác ABC , O nằm trong tam giác đó. Các tia AO,BO,CO cắt BC,CA,AB tại M,N,P. Chứng minh rằng trong ba tỉ số OA/OM ; OB/ON; OC/OP có ít nhất một tỉ số không nhỏ hơn 2 và ít nhất một tỉ số không lớn hơn 2. ( bài toán cực trị trong hình học)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cosi ta được \(a+b+c\ge2\sqrt{a\left(b+c\right)}\Leftrightarrow\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\Leftrightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
tương tự \(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
dấu = xảy ra khi a=b+c ; b=c+a ; c=a+b => a=b=c=0 (vo lí ) => k xảy ra dấu ==> dpcm
Không mất tính tổng quát giả sử \(1\le a\le b\le c\le2\)\(\Rightarrow\hept{\begin{cases}\frac{a}{b}\le1\\\frac{b}{c}\le1\end{cases}\Rightarrow\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\ge0}\)(1)
Tương tự ta có \(\left(1-\frac{b}{a}\right)\left(1-\frac{c}{b}\right)\ge0\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{b}\right)\le2\left(\frac{a}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{a}{c}\right)+3\le5+2\left(\frac{a}{c}+\frac{c}{a}\right)\)(2)
Mà :\(\left(2-\frac{a}{c}\right)\left(\frac{1}{2}-\frac{a}{c}\right)\le0\Rightarrow\frac{1}{2}-\frac{a}{c}\le0\Leftrightarrow\frac{1}{2}\le\frac{a}{c}\le1\Rightarrow\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)
\(\left(3\right)\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le5+\frac{2.5}{2}=10\Rightarrow dpcm\)
Dấu= xảy ra khi \(\left(a,b,c\right)\in\left\{\left(1,1,2\right);\left(2,2,1\right)\right\}\)và các cặp hoán vị của nó
\(\)
1/ Cho \(a,b,c\ge1\)Chứng minh rằng:
\(\frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\ge\frac{3}{1+abc}\)
2/ Cho \(a,b,c,d\in\left[0;1\right].\)Chứng minh rằng:
\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}.\)
3/ Giả sử\(a,b>0\)và
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương
Ta có: \(A^2=\left(\sqrt{x-1}+\sqrt{3-x}\right)^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(A^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\le2+x-1+3-x=4\) (BĐT Cô - si)
Vì \(A^2\le4\) nên \(A\le\sqrt{4}=2\)
Max A = 2 <=> x-1=3-x <=> x=1
CTV kiểu gì đây ??? Nguyễn Hoàng Tiến ko xứng đáng chút nào!
\(f\left(x\right)=\left(x^2-x+b\right)\left(6x^2+dx+e\right)\)
\(\Rightarrow6x^4-7x^3+ax^2+3x+2=6x^4+x^3\left(d-6\right)+x^2\left(6b-d+e\right)+x\left(bd-e\right)+eb\)
đồng nhất thưc 2 vế ta được \(\hept{\begin{cases}-7=d-6\\a=6b-d+e\\3=bd-e\end{cases};2=eb}\)\(\Rightarrow\hept{\begin{cases}d=-1\\a=6b+e+1\\-3=b+e\end{cases};be=2}\)
\(\Rightarrow\hept{\begin{cases}b=-2\\e=-1\end{cases}}\) hoặc \(\hept{\begin{cases}b=-1\\e=-2\end{cases}}\)
+> \(\hept{\begin{cases}b=-2\\e=-1\end{cases}}\Rightarrow a=-12\)
+>\(\hept{\begin{cases}b=-1\\e=-2\end{cases}\Rightarrow a=-7}\)
Vậy \(\left(a,b\right)\in\left\{\left(-12;-2\right);\left(-7;-1\right)\right\}\)
Trước hết ta chứng minh \(\frac{OA}{AM}+\frac{OB}{BN}+\frac{OC}{CP}=1\)
Thậy vậy \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{ON}{CP}=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{AOC}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}=1\)
Đặt \(\frac{OM}{AM}=x;\frac{ON}{BN}=y;\frac{OP}{CP}=z\Rightarrow x+y+z=1.\)
Khi đó \(a=\frac{OA}{OM}=\frac{AM-OM}{OM}=\frac{AM}{OM}-1=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\)
Tương tự \(\frac{OB}{ON}=b\Rightarrow y=\frac{1}{b+1};\frac{OC}{OP}=c\Rightarrow z=\frac{1}{c+1};\)
Vậy thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1.\)
Nếu cả a, b, c đều nhỏ hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}>\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)
Vậy phải tồn tại một tỉ số không nhỏ hơn 2.
Nếu cả a, b, c đều lớn hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)
Vậy phải tồn tại một tỉ số không lớn hơn 2.