Cho các số dương a, b, c thỏa mãn a^3+b^3+c^3=3abc
Tính giá trị biểu thức
M=(a-b) ^2017+(b-c) ^2016+(c-a) ^201
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik nhờ bạn đã trl câu hỏi của mik nhắn tin cho mim hoặc đăng lại lời giải giúp mik đc k lời giải k hiển thị
\(\dfrac{1}{x}+\dfrac{1}{y}>=\dfrac{4}{x+y}\left(2\right)< =>\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)>=4\\ < =>1+\dfrac{x}{y}+\dfrac{y}{x}+1>=4\\ < =>\dfrac{x}{y}+\dfrac{y}{x}>=2\left(1\right)\)
Theo BĐT Cô Si, ta có :
\(\dfrac{x}{y}+\dfrac{y}{x}>=2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\sqrt{1}=2\)
Dấu ''='' xảy ra khi : \(\dfrac{x}{y}=\dfrac{y}{x}< =>x=y\)
=> (1) luôn đúng =>(2) luôn đúng
Vậy \(\dfrac{1}{x}+\dfrac{1}{y}>=\dfrac{4}{x+y}\)( Dấu ''='' xảy ra khi `x=y`)
``
\(P=\dfrac{1}{4x^2+9y^2}+\dfrac{1}{12xy}>=\dfrac{4}{4x^2+9y^2+12xy}=\dfrac{4}{\left(2x+3y\right)^2}=\dfrac{4}{2^2}=1\)
Dấu ''='' xảy ra khi : \(\dfrac{1}{4x^2+9y^2}=\dfrac{1}{12xy};2x+3y=2< =>x=\dfrac{1}{2};y=\dfrac{1}{3}\)
Mik nhờ bạn nào đã giải bài toán giúp mik coa thể đăng lại lời giải hoặc nhắn tin qua cho mik đc k ạ vì lời giải k hiển thị
Cái cuối cùng là 2015 nha mn giúp mik vs
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ab-3bc-3ac\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
mà \(a,b,c\) là các số dương nên
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\).
Do đó \(M=0\).