Giải hệ phương trình :
\(\hept{\begin{cases}x+y+z=16\\\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=8\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x + \(\frac{1}{x}\ge2\)
y2 + \(\frac{1}{y}+\frac{1}{y}\ge3\)
z3 + \(\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\ge4\)
Cộng vế theo vế ta được
x + y2 + z3 + \(\frac{1}{x}+\frac{2}{y}+\frac{3}{z}\ge9\)
Dấu bằng xảy ra khi x = y = z = 1
Dễ thấy x - y = 0 không phải là nghiệm hệ này ta chia vế theo vế rồi rút gọn thì được
4x2 + 17xy + 4y2 = 0
<=>(x + 4y)(4x + y) = 0
Tới đây thì bài toán đơn giản rồi
5x\(\sqrt{x-a}\)=2a-2a\(^2\)-2x
<=> \(\sqrt{x-a}\)=\(\frac{2a-2a^2-2x}{5x}\)
+ Với \(\frac{2a-2a^2-2x}{5x}\)=0 <=> 2a - 2a\(^2\)-2x = 0 <=> a\(^2\)-a+x=0 <=> a + \(\frac{1}{2}\)=\(\sqrt{\frac{1}{4}-x}\)
<=> a = \(\sqrt{\frac{1}{4}-x}\)- \(-\frac{1}{2}\)=....... tự giải
xét trường hợp \(\frac{2a-2a^2-2x}{5x}\)\(\ne\)0 rồi tự giải tiếp
=>\(am^3=bn^3=cp^3=\frac{am^3}{m}+\frac{bn^3}{n}+\frac{cp^3}{p}\)
=>\(am^3=bn^3=cp^3=am^2+bn^2+cp^2\)
\(\sqrt[3]{am^2+bn^2+cp^2}=m\sqrt[3]{a}=n\sqrt[3]{b}=p\sqrt[3]{c}\)
=>\(\sqrt[3]{am^2+bn^2+cp^2}.1=m\sqrt[3]{a}.\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=\frac{m\sqrt[3]{a}}{m}+\frac{n\sqrt[3]{b}}{n}+\frac{p\sqrt[3]{c}}{p}\)
\(\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé
a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
b/ x = 3 và A = 4
Ta có a × a < aa = 10 a + a
<=> a < 11(đúng)
aa × aa < aaaa = 100 aa + aa
<=> aa < 101 (đúng)
aaa × aaa < aaaaaa = 1000 aaa + aaa
<=> aaa < 1001 (đúng)
....,..............
\(\hept{\begin{cases}\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=32\\\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=8\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=32\\a+b+c=8\end{cases}}}\)
\(a^2+b^2+c^2=2a+2b+2c\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0.\)
\(\Rightarrow a=b=c\)
\(\Leftrightarrow x=y=z=\frac{16}{3}\)
Sai rồi làm lại đi bạn