Một chủ thầu xây dựng có mảnh đất hình chữ nhật dài 45 m, chiều dài hơn chiều rộng 25 m. Trên mảnh đất đó, người chủ thầu xây 18 căn nhà có diện tích như nhau. Tính diện tích mỗi căn nhà người chủ thầy đã xây?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Gọi số ngày mà tổ đó phải hoàn thành theo kế hoạch là: \(x\) (ngày)
Điều kiện: \(x\) \(\in\) N
Số ngày thực tế đội đó hoàn thành là: \(x\) - 2 (ngày)
Số áo mỗi ngày đội đó làm được theo kế hoạch là: \(\dfrac{1200}{x}\) (chiếc áo)
Số áo mỗi ngày mà đội đó làm được trên thực tế là: \(\dfrac{1200}{x-2}\) (chiếc áo)
Theo bài ra ta có phương trình:
\(\dfrac{1200}{x-2}\) - \(\dfrac{1200}{x}\) = 20
\(\dfrac{60}{x-2}\) - \(\dfrac{60}{x}\) = 1
60\(x\) - 60\(x\) + 120 = \(x^2\) - 2\(x\)
\(x^2\) - 2\(x\) + 1 = 121
(\(x\) - 1)2 = 112
\(\left[{}\begin{matrix}x-1=11\\x-1=-11\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=12\\x=-10\end{matrix}\right.\)
Vì \(x\) > 0 nên \(x\) = 12
Kêt luận số ngày mà đội đó phải hoàn thành theo kế hoạch là 12 ngày.
Gọi thời gian tổ may xong áo theo kế hoạch là \(x(\text{ngày};x\in \mathbb{N}^*)\)
Theo kế hoạch thì mỗi ngày tổ may được: \(\dfrac{1200}{x}\) (chiếc áo)
Thời gian tổ may xong trên thực tế là: \(x-2\) (ngày)
Trên thực tế thì mỗi ngày tổ may được: \(\dfrac{1200}{x-2}\) (chiếc áo)
Do cải tiến kỹ thuật nên mỗi ngày tổ may thêm được 20 chiếc áo, khi đó ta có pt:
\(\dfrac{1200}{x}+20=\dfrac{1200}{x-2}\)
\(\Leftrightarrow1200\cdot\left(\dfrac{1}{x-2}-\dfrac{1}{x}\right)=20\)
\(\Leftrightarrow\dfrac{x-\left(x-2\right)}{x\left(x-2\right)}=\dfrac{20}{1200}\)
\(\Leftrightarrow\dfrac{2}{x^2-2x}=\dfrac{1}{60}\)
\(\Rightarrow x^2-2x=120\)
\(\Leftrightarrow x^2-2x-120=0\)
\(\Leftrightarrow\left(x-1\right)^2-121=0\)
\(\Leftrightarrow\left(x-12\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=-10\left(ktm\right)\end{matrix}\right.\)
Vậy theo kế hoạch tổ phải may số áo trên trong 12 ngày.
Giải
Gọi số ngày mà tổ đó phải hoàn thành theo kế hoạch là: \(x\) (ngày)
Điều kiện: \(x\) \(\in\) N
Số ngày thực tế đội đó hoàn thành là: \(x\) - 2 (ngày)
Số áo mỗi ngày đội đó làm được theo kế hoạch là: \(\dfrac{1200}{x}\) (chiếc áo)
Số áo mỗi ngày mà đội đó làm được trên thực tế là: \(\dfrac{1200}{x-2}\) (chiếc áo)
Theo bài ra ta có phương trình:
\(\dfrac{1200}{x-2}\) - \(\dfrac{1200}{x}\) = 20
\(\dfrac{60}{x-2}\) - \(\dfrac{60}{x}\) = 1
60\(x\) - 60\(x\) + 120 = \(x^2\) - 2\(x\)
\(x^2\) - 2\(x\) + 1 = 121
(\(x\) - 1)2 = 112
\(\left[{}\begin{matrix}x-1=11\\x-1=-11\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=12\\x=-10\end{matrix}\right.\)
Vì \(x\) > 0 nên \(x\) = 12
Kêt luận số ngày mà đội đó phải hoàn thành theo kế hoạch là 12 ngày.
\(y-y\times2+y:\dfrac{1}{5}=28\)
\(y-y\times2+y\times5=28\)
\(y\times\left(1-2+5\right)=28\)
\(y\times4=28\)
\(y=28:4\)
\(y=7\)
Thời gian 1 công nhân hoàn thành công việc đó là:
\(7\times12=84\) (giờ)
Nếu có 21 công nhân thì công việc đó sẽ hoàn thành trong:
\(84:21=4\) (giờ)
Giải: Ta thấy
Số công nhân x thời gian = hằng số.
ban đầu: 12 công nhân x 7 giờ = 84 công nhân- giờ
Lúc sau số công nhân là 21 người, vậy thời gian hoàn thành công việc là:
T= 84/ 21 = 4 giờ
Đáp số: 4 giờ
Chiều rộng mảnh đất là:
\(45-25=20\left(m\right)\)
Diện tích mảnh đất là:
\(45\times20=900\left(m^2\right)\)
Diện tích mỗi căn nhà là:
\(900:18=50\left(m^2\right)\)