K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017
= 4 đó bạn
19 tháng 2 2021

4 đó bạn

HỌC TỐT!

29 tháng 11 2017

Vậy x bằng ...

16 tháng 11 2017

\(4^{x+x}\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:2^4\)

\(4^x\cdot4^x\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:16\)

\(4^x=2^{4\cdot x}:16\)

\(16=\frac{\left(2^4\right)^x}{4^x}\)

\(16=\frac{\left(2^4\right)^x}{4^x}\)

\(16=\frac{16^x}{4^x}\)

\(16=\left(\frac{16}{4}\right)^x\)

\(16=4^x\)

\(4^x=16\)

\(4^x=4^2\)

\(\Rightarrow x=2\)

16 tháng 11 2017

Từ hàng thứ 2 qua thứ 3 là do cách triệt số khi chuyển vế 

Mình bổ sung nha:

\(4^x\cdot4^x\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:16\)

\(\frac{4^x\cdot4^{\sqrt{x+2}}}{4^x\cdot4^{\sqrt{x+2}}}+2^{x^3}-2^{x^3}=\cdot2^{4\cdot x}:16:4^x\)

6 tháng 11 2021

om cái gì là olm mới đúng

16 tháng 11 2017

TH 1: \(x^2+y^2< 1\)

\(\Rightarrow\hept{\begin{cases}|x|< 1\\|y|< 1\end{cases}}\)

\(\Rightarrow S=x+2y\le\sqrt{2\left(x^2+y^2\right)}+y< 1+\sqrt{2}\left(1\right)\)

TH 2: \(x^2+y^2>1\)

\(\Rightarrow x^2-x+y^2-y\le0\)

\(\Leftrightarrow\left(S-2y\right)^2-\left(S-2y\right)+y^2-y\le0\)

\(\Leftrightarrow5y^2+\left(1-4S\right)y+S^2-S\le0\)

\(\Rightarrow\Delta=\left(1-4S\right)^2-4.5.\left(S^2-S\right)\ge0\)

\(\Leftrightarrow S\le\frac{5+\sqrt{10}}{2}\left(2\right)\)

Từ (1) và (2) suy ra được GTLN của S

PS: S là đặt cho nó gọn nhé