rút gọn
\(\frac{x^3+2x^2-4}{x^3-3x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,x^2+4x+3=x^2+3x+x+3.\)
\(=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)
\(c,16x-5x^2-3=x-5x^2+15x-3\)
\(=x\left(1-5x\right)+3\left(5x-1\right)\)
\(=\left(x+3\right)\left(1-5x\right)\)
\(d,x^4+4=x^4+4x^2+4-4x^2=\left(x+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(A=x^2+4x+3=\left(x^2+4x+4\right)-1\)
\(=\left(x+2\right)^2-1\ge-1\)
Dấu "=" xảy ra <=> x = -2
Vậy ...
\(\forall\)là dấu : với mọi
Ví dụ : \(\forall x\)thì \(x^2\ge0\)
Thế nhá
\(x^3+x^2-x-1\)
\(=x\left(x^2-1\right)+\left(x^2-1\right)\)
\(=\left(x^2-1\right)\cdot\left(x+1\right)\)
\(=\left(x+1\right)\cdot\left(x-1\right)\cdot\left(x+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x-1\right)\)
A = x3 + x2 - x - 1
= x2( x + 1 ) - ( x + 1 )
= ( x + 1 ) ( x2 - 1 )
= ( x + 1 ) ( x - 1 ) ( x + 1 )
= ( x + 1 )2 ( x - 1 )
Chúc bạn học tốt nha!!!!!
Ta có 25x2-10xy2+y4
=(5x-y2)2 (cái này là hằng đẳng thức thứ 2 nha !!!!)
Xong rùi,nhớ
\(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]\)
\(=\left(x^2-1\right)\left[x^4-2x^2+1-\left(x^4-x^2+1\right)\right]\)
\(=-3x^2\left(x^2-1\right)\)
( x2 - 1 )3 - ( x4 + x2 + 1 ) . ( x2 - 1 )
= [ ( x2 )3 - 3 . ( x2 )2 . 1 + 3 . x2 . 12 - 13 ] . [ ( x2 )3 - 13 ]
= ( x6 - 3x4 + 3x2 - 1 ). ( x6 - 1 )
Mình không biết đề là gì nhưng mình nghĩ là phân tích đa thức thành nhân tử nên mình làm vậy, nếu đúng thì nhé.
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
Hình như bạn viết sai đề bài thì phải.