a) Chứng minh -x2+2x-2 < -1
b) Tính giá trị biểu thức x4-3x3+3x2-3x+48 tại x=2
c) Chứng minh với mọi số m là số nguyên thì m3-m luôn chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+xy-3x-y=5\)
\(\Leftrightarrow x^3-3x-5=y\left(1-x\right)\)
Với \(x=1\)không thỏa mãn.
Với \(x\ne1\):
\(y=\frac{x^3-3x-5}{1-x}=\frac{\left(x-1\right)\left(x^2+x-2\right)-7}{1-x}=-\left(x^2+x-2\right)+\frac{7}{x-1}\)
Để \(y\inℤ\)thì \(\frac{7}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow x\in\left\{-6,0,2,8\right\}\)
Ta có các bộ \(\left(x,y\right)\)thỏa mãn là: \(\left(-6,-29\right),\left(0,-5\right),\left(2,3\right),\left(8,-69\right)\).
ta có: x6 +27=(x2)3 +33
=(x2+3)(x4 - 3x2 +9)
Phân tích mẫu \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-c^2b\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)=-\left(b-c\right)\left(a-b\right)\left(c-a\right)\)
Đặt b - c = x, c - a = y, a - b = z
=> x + y + z = b - c + c - a + a - b = 0
Từ x+y+z=0 => x3+y3+z3=3xyz (tự c/m)
=>\(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3\)
\(A=x^3+2x^2-2x-12=\left(x^3-2x^2\right)+\left(4x^2-8x\right)+\left(6x-12\right)\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(x^2+4x+6\right)\)
Vậy B = x2+4x+6
tôi chưa học về cái này nên chua trả lời được
xin lỗi nhé
a.\(-x^2+2\text{x}-2\le-1\Leftrightarrow-(x-1)^2-1\le-1\)
Do \((x-1)^2\ge0\)
\(\Rightarrow-(x-1)^2\le0\)
\(\Rightarrow-(x-1)^2-1\le-1\)