Phân tích đa thức thành nhân tử
a)x3-19x-30 b)3abc+a2(a-b-c)+b2(b-a-c)+c2(c-a-b)-c(b-a)(a-c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2bc(b + 2c) + 2ac(c - 2a) - 2ab(a + 2b) - 7abc
= 2b2c + 4bc2 + 2ac2 - 4a2c - 2ab(a + 2b) - 7abc
= 2b2c + abc + 4bc2 + 2ac2 - 4a2c - 8abc - 2ab(a + 2b)
= bc(2b + a) + 2c2(2b + a) - 4ac(a + 2b) - 2ab(a + 2b)
= (a + 2b)(bc + 2c2 - 4ac - 2ab)
= (a + 2b)[c(b + 2c) - 2a(2c + b)]
= (a + 2b)(b + 2c)(c - 2a)
\(pkkikkkkkk\min\limits_{kkkkk\max\limits_{ }kkkk\lim\limits_{\rightarrow}kkkk\sqrt{ }kkk\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }\sqrt{ }k\sqrt{ }k\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }}\)
\(x^2+y^2+z^2=xy+yz+zx\)
\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)
\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)
\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)
Có \(x^{2014}+y^{2014}+z^{2014}=3\)
\(\Rightarrow3.x^{2014}=3\)
\(\Rightarrow x^{2014}=1\)
\(\Rightarrow x=1\)
\(\Rightarrow x=y=z=1\)
Có: \(P=x^{25}+y^4+z^{2015}\)
\(\Rightarrow P=1^{25}+1^4+1^{2015}\)
\(P=1+1+1\)
\(P=3\)
Vậy \(P=3\)
Tham khảo nhé~
Ta có: x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0
<=>(x-y)2+(y-z)2+(z-x)2=0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)
=>x2014=y2014=z2014
Lại có: x2014+y2014+z2014 = 3
=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)
=>\(x=y=z=\pm1\)
Thay x,y,z vào P rồi tính
\(=\frac{15\left(x-y\right)^5}{5\left(x-y\right)^3}-\frac{10\left(x-y\right)^4}{5\left(x-y\right)^3}+\frac{20\left(x-y\right)^3}{5\left(x-y\right)^3}\)
\(=3\left(x-y\right)^5-2\left(x-y\right)^4+4\left(x-y\right)^3\)
x3 - 19x - 30
= x3 - 4x - 15x - 30
= x(x2 - 4) - 15(x + 2)
= x(x - 2)(x + 2) - 15(x + 2)
= (x2 - 2x) (x + 2) - 15(x + 2)
= (x + 2)(x2 - 2x - 15)
= (x + 2)(x2 - 5x + 3x - 15)
= (x + 2)(x - 5)(x + 3)