Trên một mảnh đất có trồng cỏ nhung hình chữ nhật có đường chéo dài 4,85m. Để làm lối đi, người ta lót gạch có kích thước 30cm x 50cm theo đường chéo của hình chữ nhật, sao cho viên gạch sau sẽ so le với với viên gạch trước nửa viên. Tìm số viên gạch cần để lót hết dường chéo đó, biết không cần cắt xén viên gạch nào cả.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn lớp 9 rồi nên mk chỉ gợi ý thôi
Đặt \(a=x^2+3x+2\)
Phương trình đã cho trở thành\(\left(a-1\right)^4+\left(a+1\right)^4=82\)
Vì đường thẳng cắt trục tung tại điểm có tung độ bằng 3 nên ta có: \(y=ax+3\left(1\right)\)
Vì ..............................hoành tại điểm có hoành độ bằng \(\sqrt{2}\), ta được điểm có tọa độ \(x=\sqrt{2}\), \(y=0\).Thay vào (1) ta được: \(a\sqrt{2}+3=0\Leftrightarrow a=-\frac{3\sqrt{2}}{2}\left(2\right)\)
Từ (1), (2) ta được đường thẳng \(y=-\frac{3\sqrt{2}}{2}x+3\)
Cho hàm số: y = f(x) = 3x. Cho x hai giá trị bất kì x1, x2 sao cho x1 < x2. Chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đã cho đồng biến trên
------------
thay x1 vào f(x) ta được f(x1)=3x1
thay x2 và f(x) ta được f(x2)=3x2
lấy f(x1)-f(x2)=3x1-3x2=3(x1-x2)(1)
ta có x1<x2=>x1-x2<0
=> (1) <0
<=>f(x1)-f(x2)<0
<=>f(x1)<f(x2)
=> hàm số đã cho đồng biến
bài làm của Nguyễn Thị Thu Trang
Từ x1 < x2 và 3 > 0 suy ra 3x1< 3x2 hay f(x1) < f(x2 ).
Vậy hàm số đã cho đồng biến trên R.
P/s: Làm theo cách ngắn gọn nhé Songoku Sky Fc11.
\(A=\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\left(\sqrt{2007}+\sqrt{2006}\right)}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)
\(B=\sqrt{2008}-\sqrt{2007}=\frac{\left(\sqrt{2008}-\sqrt{2007}\right)\left(\sqrt{2008}+\sqrt{2007}\right)}{\left(\sqrt{2008}+\sqrt{2007}\right)}=\frac{1}{\sqrt{2008}+\sqrt{2007}}\)(2)
Từ 1 và 2 => \(\frac{1}{\sqrt{2007}+\sqrt{2006}}>\frac{1}{\sqrt{2008}+\sqrt{2007}}\)
hay \(\sqrt{2007}-\sqrt{2006}>\sqrt{2008}-\sqrt{2007}\)
P/s tham khảo nha
\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{5}+\sqrt{5}+1-1\)
\(\sqrt{2}A=2\sqrt{5}\)
\(A=\sqrt{10}\)
P/s tham khảo nha
Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(\Rightarrow A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{9-5}\)
\(=6+2\sqrt{4}\)
\(=10\)
Mà \(A>0\Rightarrow A=\sqrt{10}\)