K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Bạn áp dụng cái này là được: \(a^3-a⋮3\)\(\forall a\in Z\)

22 tháng 11 2017

đề sai rùi

23 tháng 11 2017

\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)

Điều kiện: \(x,y\ge0\)

Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ

Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)

\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)

\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)

Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)

\(\Leftrightarrow a=b\)

\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)

\(\Leftrightarrow x=y\)

Thế vô (1) ta được:

\(2x^{2017}=1\)

\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)

22 tháng 11 2017

Ta có:\(n=4x^2y^2-7x+7y=\left(2xy-1\right)^2+4xy-7x+7y-1>\left(2xy-1\right)^2\)

\(n=\left(2xy+1\right)^2-4xy+7y-7x-1< \left(2xy+1\right)^2\)

\(\Rightarrow\left(2xy-1\right)^2< n< \left(2xy+1\right)^2,\)mà \(n\)là số chính phương nên ta có:

\(n=\left(2xy\right)^2\Leftrightarrow4x^2y^2-7x+7y=4x^2y^2\Leftrightarrow x=y\left(đpcm\right)\)

21 tháng 11 2017

\(P=\frac{a}{2\left(b+c\right)-a}+\frac{b}{2\left(c+a\right)-b}+\frac{c}{2\left(a+b\right)-c}\)

\(=\frac{a^2}{2\left(ab+ca\right)-a^2}+\frac{b^2}{2\left(bc+ab\right)-b^2}+\frac{c^2}{2\left(ca+bc\right)-c^2}\)

\(\ge\frac{\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)

\(\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2-\frac{\left(a+b+c\right)^2}{3}}=1\)

      

21 tháng 11 2017

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)......................................................

21 tháng 11 2017

Câu a)

Em mới hc lớp 7 nên chỉ chứng minh cái phần dấu bằng xảy ra khi nào thui. Ko biết có đúng ko

Theo đề bài Ta có

\(\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow\left(ac+bd\right)^2=\left(a^2+b^2\right)^2=\left(c^2+d^2\right)^2\)

Suy ra \(ac=a^2,bd=b^2,ac=b^2\)

Suy ra \(a=b=c=d\)

Vậy dấu bằng xảy ra khi \(a=b=c=d\)

21 tháng 11 2017

ukm nhưng anh cần câu b