(-10x+10y).2y+3x^4-1x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BDT \(2xy\le x^2+y^2\). Thật vậy, BDT này \(\Leftrightarrow0\le x^2-2xy+y^2\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BDT phụ được cm. Dấu "=" xảy ra khi \(x=y\)
Gọi O là giao điểm của 2 đường chéo AC, BD. Áp dụng BDT phụ, ta có \(2OA.OB\le OA^2+OB^2\) (1)
Do tứ giác ABCD là hình thoi nên 2 đường chéo AC, BD vuông góc với nhau tại O. Theo định lý Py-ta-go, ta có \(OA^2+OB^2=AB^2\)
Mặt khác tứ giác ABCD là hình thoi nên \(AB=AD\Rightarrow AB^2=AB.AD\) (2)
Từ (1) và (2) \(\Rightarrow2OA.OB\le AB.AD\) \(\Leftrightarrow\dfrac{1}{2}.2OA.2OB\le AB.AD\) \(\Leftrightarrow\dfrac{1}{2}.2OA.2OB\le AB.AD\) \(\Leftrightarrow S_{ABCD}\le AB.AD\)
b) Câu này quá đơn giản rồi. Vì \(AB=AD=a\) nên từ câu a ta có \(S_{ABCD}\le a^2\)
c) Khi \(S_{ABCD}\) đạt GTLN thì theo câu a, dấu "=" sẽ xảy ra khi \(OA=OB\) hay \(AC=BD\), đồng nghĩa với việc 2 đường chéo AC, BD của hình thoi ABCD bằng nhau hay tứ giác ABCD là hình vuông.
Xét \(\Delta ADE\) và \(\Delta CDB\) , ta có :
AD = CD ( D là trung điểm AC )
\(\widehat{ADE}=\widehat{CDB}\) ( 2 góc đối đỉnh )
DE = DB ( đề bài cho )
\(\Rightarrow\Delta ADE=\Delta CDB\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAE}=\widehat{DCB}\)
Mà \(\widehat{DAE}\) và \(\widehat{DCB}\) ở vị trí sole trong
\(\Rightarrow AE//BC\)
\(A=x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}-\dfrac{9}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
\(A_{min}=-\dfrac{9}{4}\) khi \(x=\dfrac{5}{2}\)
\(A=x^2-5x+4\)
\(\Leftrightarrow A=x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{9}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Dấu bằng xảy ra
\(\Leftrightarrow x-\dfrac{5}{2}=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
bạn đăng tách ra nhé
a, \(x-\dfrac{3}{7}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{1}{8}+\dfrac{3}{7}=\dfrac{31}{56}\)
b, \(-2x=\dfrac{1}{6}+\dfrac{3}{5}=\dfrac{23}{30}\Leftrightarrow x=\dfrac{23}{30}:\left(-2\right)=-\dfrac{23}{-60}\)
c, \(\left|2x-3\right|=\dfrac{1}{6}-\dfrac{1}{2}=\dfrac{-1}{3}\)( vô lí )
a + b, A=\(\dfrac{x-3\sqrt{x}+2}{x-4\sqrt{x}+3}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
ĐKXĐ: \(\sqrt{x}-3\)\(\Leftrightarrow\sqrt{x}\)\(\ne\)3\(\Leftrightarrow\) x\(\ne\)9
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+1}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\Rightarrow\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\sqrt{x}-3\) | 1 | -1 |
x | 16 | 4 |
ko bít