K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2023

\((x+5)^2-4x^2\\=(x+5)^2-(2x)^2\\=(x+5-2x)(x+5+2x)\\=(5-x)(3x+5)\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

$2x^3y+2xy^3+4x^2y^2-8xy$

$=2xy(x^2+y^2+2xy-4)$

$=2xy[(x^2+2xy+y^2)-4]$

$=2xy[(x+y)^2-2^2]=2xy(x+y-2)(x+y+2)$

P.s: lần sau bạn lưu ý ghi đầy đủ yêu cầu đề.

4 tháng 11 2023

1 B

2 D

3 C

4 A

5 C

VII

1 Although she is careful, she still forgets her phone when she goes out

 

4 tháng 11 2023

\((2x-5)^2-64x^2\\=(2x-5)^2-(8x)^2\\=(2x-5-8x)(2x-5+8x)\\=(-6x-5)(10x-5)\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

$(2x-5)^2-64x^2=(2x-5)^2-(8x)^2$

$=(2x-5-8x)(2x-5+8x)$

$=(-6x-5)(10x-5)$

$=-5(6x+5)(2x-1)$

21 tháng 11 2023

Python

Pascal

Java

C++

Arduino

4 tháng 11 2023

câu a chưa đủ đề em hấy

4 tháng 11 2023

c, \(x\)(\(x\) - 2022) + 4.(2022 - \(x\)) = 0

       (\(x\) - 2022).(\(x\) - 4) = 0

         \(\left[{}\begin{matrix}x-2022=0\\x+4=0\end{matrix}\right.\)

          \(\left[{}\begin{matrix}x=2022\\x=4\end{matrix}\right.\)

21 tháng 11 2023

#include <iostream>
#include <vector>
using namespace std;

vector<int> solve(int d) {
    vector<int> res(2, 0);
    int p = 1;
    while (d > 0) {
        int digit = d % 10;
        d /= 10;
        if (digit == 4) {
            res[0] += p * 3;
            res[1] += p;
        } else {
            res[0] += p * digit;
        }
        p *= 10;
    }
    return res;
}

int main() {
    int d;
    cin >> d;
    vector<int> res = solve(d);
    cout << res[0] << " " << res[1] << endl;
    return 0;
}

4 tháng 11 2023

Có 4 cách chọn thẻ thứ nhất. có 3 cách chọn thẻ thứ hai số cách chọn 2 tấm thẻ khác nhau từ 4 tấm thẻ là:

                 4 x 3 = 12 (cách)

Theo cách tính trên mỗi cách đã được tính hai lần. Vậy số cách lấy được 2 tấm thẻ từ bốn tấm thẻ đã cho là:

              12 : 2 = 6 (cách)

Có 2 cách chọn tấm thẻ thứ nhất, có 3 cách chọn thẻ thứ hai. Vậy số cách chọn hai tấm thẻ để tích các số trên hai thẻ rút ra là số chẵn" là:

                 2 x 3 = 6 (cách)

Theo cách tính trên mỗi cách đã được tính hai lần.

Vậy số cách để rút hai tấm thẻ mà tích các số trên hai thẻ là số chẵn là: 

                  6 : 2  = 3 (cách)

Xác suất của biến cố "tích các số trên hai thẻ rút ra là số chẵn" là:

                  3 : 6 = \(\dfrac{1}{2}\)

Kết luận:...

4 tháng 11 2023

Cách thứ hai: Số cách chọn 2 thẻ bất kì (có kể thứ tự) là \(4.3=12\) cách. Như vậy, số cách chọn 2 thẻ không tính thứ tự là \(\dfrac{12}{2}=6\) cách.

Ta xét biến cố A: "Tích 2 số trên 2 thẻ rút ra là số chẵn." Biến cố đối của nó là \(\overline{A}\):  "Tích 2 số trên 2 thẻ rút ra là số lẻ." Biến cố này tương đương với biến cố: "Cả 2 số trên 2 thẻ rút được là số lẻ."

 Ta thấy trường hợp duy nhất thỏa mãn là rút được 2 tấm thẻ số 5 và 7. \(\Rightarrow P\left(\overline{A}\right)=\dfrac{1}{6}\) \(\Rightarrow P\left(A\right)=\dfrac{5}{6}\)

 Vậy xác suất của biến cố: "Tích các số trên 2 thẻ rút ra là số chẵn." là \(\dfrac{5}{6}\).