Cho tam giác ABC,M là trung điểm cạnh BC.Kẻ BH,CK vuông góc vs AM.E là trung điểm BK,F là trung điểm CH.CMR:
Tam giác AEF cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ODA và tam giác ODB có : OD chung
^DOB = ^DOA do OD là pg của ^BOA (gt)
OA = OB (gt)
=> tam giác ODA = tam giác ODB (c-g-c)
b, t đoán đề là cm OD _|_ AB
tam giác ODA = tam giác ODB (câu a)
=> ^ODA = ^ODB (đn)
mà ^ODA + ^ODB = 180 (kb)
=> ^ODA = 90
=> OD _|_ AB
c, xét tam giác BOE và tam giác AOE có : OE chung
^BOD = ^AOD (câu a)
OB = AO (gt)
=> tam giác BOE = tam giác AOE (c-g-c)
=> EB = EA (đn) => E thuộc đường trung trực của AB
OB = OA (Gt) => O thuộc đường trung trực của AB
=> OE là trung trực của AB
a, vì AM là tpg của A nên BAM=CAM
xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)
=> tam giác AMB=AMC(g.c.g)
b,vì tam giác AMB=AMC nên góc AMB=AMC
mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC
vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)
=> BM=CM=BC:2=3 cm
theo định lí PTG, ta có:
AM2+BM2=AB2
hay AM2= AB2- BM2
<=>AM2=52-32=16
=> AM= 4 cm.
c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)
xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.
có nhiều trường hợp lắm, nên mik làm 2 cáh thui nha:
Cách 1: trường hợp cạnh - cạnh - cạnh
Ta có: AB = DE
BC = EF
vậy cần: AC = DF
Cách 2: trường hợp cạnh - góc - cạnh
Ta có: AB = DE
BC = EF
Vậy cần \(\widehat{ABC}=\widehat{DEF}\)
hok tốt!!
để tam giác ABC= tam giác DEF theo trường hợp c-c-c thì ta cần thêm điều kiện AC=DF
...............................................................................c-g-c..........................................góc A = góc D
Chúc bạn học tốt
Định lý 1: Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn.
Định lý 2: Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.
Ta có: \(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}\left(6+1\right)}\)
\(=\frac{2.6}{3.7}=\frac{4}{7}\)
\(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{2^{12}.3^{10}+120.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^3.2^9.3^9.3+120.2^9.3^9}{2.2^{11}.3^{11}.3+2^{11}.3^{11}}\)
\(=\frac{2^9.3^9.\left(2^3.3+120\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)
\(=\frac{2^9.3^9.144}{2^{11}.3^{11}.7}\)
\(=\frac{2^9.3^9.2^4.3^2}{2^{11}.3^{11}.7}\)
\(=\frac{2^2.2^7.3^9.2^4.3^2}{2^{11}.3^{11}.7}\)
\(=\frac{4.2^{11}.3^{11}}{2^{11}.3^{11}.7}=\frac{4}{7}\)