Rút gọn biểu thức A= (3+1)(3^2+1)(3^4+1)...(3^63+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{x^2+ax^2+a+a^2+a^2x^2+1}{x^2-ax^2-a+a^2+a^2x^2+1}\)
\(=\frac{x^2+1+a\left(x^2+1\right)+a^2\left(x^2+1\right)}{x^2+1-a\left(x^2+1\right)+a^2\left(x^2+1\right)}\)
\(=\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left[\left(2y\right)^2+2\cdot2y\cdot2+2^2\right]+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x;y;z\)
\(\Rightarrowđpcm\)
b) tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(a-b\right)-b^2\left(b-c\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a+b-b-c\right)=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(ab^2-ac^2-b^3+bc^2\)
\(=b^2\left(a-b\right)-c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
Vậy \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{a-c}{b+c}\)
Có a2(b-c) + b2(c-a) + c2(a-b)
= a2(b-c) - b2(a-c) + c2(a-b)
= a2(b-c) - b2(b-c+a-b) + c2(a-b)
= a2(b-c) - b2(b-c) - b2(a-b) + c2(a-b)
=[a2(b-c) - b2(b-c)] - [b2(a-b) - c2(a-b)]
=(b-c)(a2-b2) - (a-b)(b2-c2)
=(b-c)(a-b)(a+b) - (a-b)(b-c)(b+c)
=(b-c)(a-b)[(a+b)-(b+c)]
=(b-c)(a-b)(a-c)
Có ab2 - ac2 - b3 + bc2
= (ab2-ac2) - (b3-bc2)
=a(b2-c2) - b(b2-c2)
=(b2-c2)(a-b)
=(b-c)(b+c)(a-b)
Có a2(b-c) + b2(c-a) + c2(a-b) / ab2 - ac2 - b3 + bc2
= (b-c)(a-b)(a-c) / (b-c)(b+c)(a-b)
= (a-c) / (b+c)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Quy đồng tí là ra.. :>>
\(A=\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{4+4x^4+4-4^2x}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}\)
\(A=\frac{8}{1-x^8}+\frac{8}{1+x^8}=\frac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}=\frac{16}{1-x^{16}}\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4y-2y^2\ge0\)
\(\Leftrightarrow2y^2-4y\le0\)
\(\Leftrightarrow2y\left(y-2\right)\le0\)
Vì y > y - 2
\(\Rightarrow\hept{\begin{cases}y\ge0\\y-2\le0\end{cases}\Rightarrow}\hept{\begin{cases}y\ge0\\y\le2\end{cases}\Rightarrow0\le y\le2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{63}+1\right).\)
\(=\frac{\left(3+1\right)\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{63}+1\right)}{2}\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{63}+1\right)}{2}\)
\(=\frac{\left(3^{64}-1\right)\left(3^{63}+1\right)}{2}\left(\text{bn xem lại chỗ }3^{63}\text{ nhé!! ko thì ko lm đc tiếp đâu}\right)\)
mk viết nhầm 3 ^ 64