So sánh: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\) với 1
- Plz help me :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-5=3,4-x\)
\(\Rightarrow2x+x=3,4+5\)
\(\Rightarrow3x=8,4\)
\(\Rightarrow x=8,4:3\)
\(\Rightarrow x=2,8\)
Đặng Trịnh Gia Phát còn tiền ăn, tiền đám xá, tiền mạng ....
B A x m y C
Kẻ \(Bm//Ax\). Ta có : \(\widehat{ABm}+\widehat{A}=180^0\) ( 1 )
Do \(Bm//Ax\)và \(Cy//Ax\)nên \(Bm//Cy\)
\(Bm//Cy\Rightarrow\widehat{CBm}+\widehat{C}=360^0\) ( 2 )
Từ 1 và 2 suy ra \(\widehat{ABm}+\widehat{A}+\widehat{CBm}+\widehat{C}=360^0\)
Do đó \(\widehat{A}+\widehat{B}+\widehat{C}=360^0\)
Ta có
<br class="Apple-interchange-newline"><div></div>2x3y =−13
=><br class="Apple-interchange-newline"><div></div>-2x1 =3y3
Áp dụng tính chất dãy Tỉ số bằng nhau ,ta có
-2x/1= 3y/3 = (-2x+3y)/( 1+3) = 7/4
=> x= -7/8, y=7/4
Ta có x/5 = y/3
=> x^2/25 =y^2/ 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x^2 /25 = y^2/9 = (x^2 -y^2)/(25- 9)= 1/4
=> x = 5/2, y = 3/2 (x,y>0)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
\(< \frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\frac{1}{4}.\left(2-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\frac{1}{4n}< 1\)
Vậy A < 1
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}.\)
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{4n^2}.\)
\(A=\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2}\right)\)
\(A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
So sánh \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};....\)
\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n-1\right)}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{n}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(2-\frac{1}{n}\right)\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{4n}\)
có \(\frac{1}{2}>\frac{1}{2}-\frac{1}{4n}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{4n}< \frac{1}{2}\) mà \(\frac{1}{2}< 1\)
\(\Rightarrow A< 1\)