Cho 4 điểm A, B, C, D. Chứng minh rằng:
a) Nếu AB giao CD tại M và MA.MB=MC.MD thì 4 điểm A, B, C, D thuộc 1 đường tròn.
b) Nếu tam giác ABC thoả mãn
MA^2=MB.MC mà M, B, C thẳng hàng thì MA là tiếp tuyến đường tròn ngoại tiếp tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Vì \(\left(x+y\right)^2-4\left(x+y\right)=45\)
\(\Rightarrow\left(x+y\right)^2-2.\left(x+y\right).2+2^2=49\)
\(\Rightarrow\left(x+y-2\right)^2=49\)\(\Rightarrow\orbr{\begin{cases}x+y-2=7\\x+y-2=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x+y=9\\x+y=-5\end{cases}}\)
Vì \(\left(x-y\right)^2-2\left(x-y\right)=3\)
\(\Rightarrow\left(x-y\right)^2-2.\left(x-y\right)+1^2=4\)
\(\Rightarrow\left(x-y+1\right)^2=4\)
\(\Rightarrow\orbr{\begin{cases}x-y-1=2\\x-y-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x-y=3\\x-y=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=y+3\\x=y-1\end{cases}}\)
* \(x+y=9\)\(\Rightarrow\orbr{\begin{cases}x=y+3\Rightarrow y=3;x=6\\x=y-1\Rightarrow y=5;x=4\end{cases}}\)
* \(x+y=-5\)\(\Rightarrow\orbr{\begin{cases}x=y+3\Rightarrow y=-4;x=-1\\x=y-1\Rightarrow y=-2;x=-3\end{cases}}\)
Vậy cặp số x;y là (6;3) , (4;5) , (-1;-4) , (-3;-2)
Kb với tớ nhé, mn!
Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
=>\(xy+\frac{1}{xy}\in Z\)
=>\(\left(xy+\frac{1}{xy}\right)^3\)
=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)
=>ĐPCM