K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2024

a)Xét 2 tam giác ABH và ACH có:
AB=AC(do tam giác ABC cân tại A)
Góc ABC bằng góc ACB (do tam giác ABC cân tại A)
BH=HC(H là trung điểm BC)
=>Tam giác ABH = tam giác ACH(cạnh - góc - cạnh)
b)Xét 2 tam giác HBA và HCM có:
Góc AHB bằng góc CHM(2 góc đối đỉnh)
HA=HM(giả thiết)
BH=HC(H là trung điểm BC)
=>Tam giác HBA bằng tam giác HCM(cạnh-góc-cạnh)
=>Góc ABH=góc MCH(2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong của đường thẳng AB và MC nên MC//AB
c)Xét tam giác ACM có:
CH là đường trung tuyến(H là trung điểm AM)
AF là đường trung tuyến(F là trung điểm MC)
Mà AF cắt CH tại G(do AF cắt BC tại G;H thuộc BC;G thuộc CH)
=>G là trọng tâm của tam giác ACM
Ta có:
ME cũng là 1 đường trung tuyến của tam giác ACM (E là trung điểm AC)
=>G thuộc ME ( tính chất 3 đường trung tuyến)
=>M,G,E thẳng hàng 

`#3107.101107`

`a)`

Vì `\triangle ABC` cân tại A

`\Rightarrow`\(\text{AB = AC; }\widehat{\text{ABC}}=\widehat{\text{ACB}}\)

Xét `\triangle ABH` và `\triangle ACH`:

`\text{AB = AC}`

\(\widehat{\text{ABC}}=\widehat{\text{ACB}}\)

\(\text{HB = HC (H là trung điểm BC)}\)

\(\Rightarrow\) `\triangle ABH = \triangle ACH (c - g - c)`

`b)`

Xét `\triangle AHB` và `\triangle MHC`:

\(\text{AH = HM}\)

\(\widehat{\text{AHB}}=\widehat{\text{MHC}}\left(\text{đối đỉnh}\right)\)

\(\text{HB = HC }\)

`\Rightarrow \triangle AHB = \triangle MHC (c-g-c)`

\(\Rightarrow\widehat{\text{ABH}}=\widehat{\text{MCH}}\left(\text{2 góc tương ứng}\right)\)

Mà `2` góc này nằm ở vị trí sole trong

\(\Rightarrow\text{ }\text{MC // AB (tính chất)}\)

`c)`

Vì E là trung điểm của AC; F là trung điểm của MC

\(\Rightarrow\text{EA = EC; FM = FC}\)

Ta có:

\(\left\{{}\begin{matrix}\text{EA = EC}\\\text{FM =FC}\\\text{HA = HM}\end{matrix}\right.\)

\(\Rightarrow\text{AF; ME và CH}\) lần lượt là các đường trung tuyến của `\triangle ACM`

Mà AF cắt HC tại G

\(\Rightarrow\) G là trọng tâm của `\triangle ACM`

\(\Rightarrow\) \(\text{G}\in\text{ME}\)

\(\Rightarrow\) `3` điểm M, G, E thẳng hàng (đpcm).

loading...

26 tháng 4 2024

a, Xét \(\Delta HBA\) và \(\Delta ABC\) có:

\(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^{\circ}\left(AH\bot BC;\Delta ABC\text{ vuông tại }A\right)\\\widehat{ABC}\text{ chung}\end{matrix}\right.\)

\(\Rightarrow \Delta HBA\backsim \Delta ABC(g.g)\)

b, Vì \(\Delta HBA\backsim \Delta ABC(cmt)\Rightarrow \widehat{HAB}=\widehat{ACB}\) (hai góc tương ứng)

hay \(\widehat{HAB}=\widehat{HCA}\) (do \(H\in BC\)>)>

Xét \(\Delta AHB\) và \(\Delta CHA\) có: \(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{CHA}=90^{\circ}\left(AH\bot BC\right)\\\widehat{HAB}=\widehat{HCA}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow \Delta AHB\backsim \Delta CHA(g.g)\Rightarrow \dfrac{AH}{CH}=\dfrac{HB}{HA}\) (các cạnh tương ứng)

\(\Rightarrow AH^2=HB\cdot HC\)

26 tháng 4 2024

26 tháng 4 2024

Hàm số bậc nhất có dạng: y = a\(x\) + b

Vì hệ số góc là - 3 nên a = -3 hàm số có dạng:

                      y = - 3\(x\) + b (d)

Vì hàm số cắt trục hoành tại đểm có hoành độ bằng 2 nên hàm số đó đi qua điểm A(2; 0).

Thay tọa độ điểm A vào phương trình đường thẳng d ta có 

                    -3.2 + b  = 0

                    -6 + b = 0

                            b = 6

Vậy hàm số có hệ số góc bằng -3 và cắt trục hoành có hoành độ bằng 2 có phương trình là:

                     y = -3\(x\) + 6

26 tháng 4 2024

Bạn tham khảo thử nhé.

def sum_multiples_of_4(numbers):
    total = 0
    for num in numbers:
        if num % 4 == 0:
            total += num
    return total

# Nhập danh sách từ người dùng
n = int(input("Nhập số phần tử của danh sách: "))
B = []
for i in range(n):
    num = int(input(f"Nhập phần tử thứ {i+1}: "))
    B.append(num)

# Tính tổng và in ra màn hình
result = sum_multiples_of_4(B)
print("Tổng các số là bội của 4 trong danh sách là:", result)

26 tháng 4 2024

     Nếu đề cho là tuần đầu tiên người đó xử lí \(\dfrac{1}{4}\) số báo cáo và tuần tiếp xử lí được \(\dfrac{1}{2}\) số báo cáo thì làm như sau:

                                  Giải:

  Số báo cáo người đó còn phải xử lí sau hai tuần ứng với phân số là:

                     1 - \(\dfrac{1}{4}\) - \(\dfrac{1}{2}\)  =  \(\dfrac{1}{4}\) (số báo cáo)

Sau hai tuần, số báo cáo mà người đó còn phải xử là:

                         120 x \(\dfrac{1}{4}\) = 30 (báo cáo)

Đáp số: 30 báo cáo. 

                    

                          

 

 

27 tháng 4 2024

Nguyễn thị thương hoài .sau tuần 1 làm gì còn 120 báo cáo nữa cô ơi.

26 tháng 4 2024

   A = \(\dfrac{3n+2}{7n+1}\) (n \(\in\) N)

Gọi ƯCLN(3n + 2; 7n + 1) = d

Ta có:  \(\left\{{}\begin{matrix}\left(3n+2\right).7⋮d\\\left(7n+1\right).3⋮d\end{matrix}\right.\)

            \(\left\{{}\begin{matrix}21n+14⋮d\\21n+3⋮d\end{matrix}\right.\)

            \(\left\{{}\begin{matrix}21n+14⋮d\\21n+14-21n-3⋮d\end{matrix}\right.\)

              \(\left\{{}\begin{matrix}21n+14⋮d\\11⋮d\end{matrix}\right.\)

\(\in\) Ư(11) = {1; 11}

      \(\left\{{}\begin{matrix}3n+2⋮11\\7n+1⋮11\end{matrix}\right.\)

        \(\left\{{}\begin{matrix}3n+2⋮11\\2.\left(3n+2\right)+n-3⋮11\end{matrix}\right.\)

          n - 3 ⋮ 11

A = \(\dfrac{3n+2}{7n+1}\) tối giản khi và chỉ khi n - 3 \(\ne\)  11k (k \(\in\) N)

   n \(\ne\) 11k + 3 (k \(\in\) N)

 

                 

            

            

          

 

 

    Bài 1. Cho tam giác ABC cân tại A (góc A nhọn, AB > BC). Gọi M là trung điểm của BC. a) Chứng minh: ∆AMB = ∆AMC b) Gọi I là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia MI tại D. Chứng minh: AD = MC. c) CD lần lượt cắt AB, AM tại S và E. Chứng minh: BC < 3AS. Bài 2: Cho vuông tại A có , kẻ đường phân giác của . Kẻ vuông góc với tại M. a) Chứng minh .tam giác DAB=tam giác DMB b)...
Đọc tiếp

 

  Bài 1. Cho tam giác ABC cân tại A (góc A nhọn, AB > BC). Gọi M là trung điểm của BC. a) Chứng minh: ∆AMB = ∆AMC b) Gọi I là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia MI tại D. Chứng minh: AD = MC. c) CD lần lượt cắt AB, AM tại S và E. Chứng minh: BC < 3AS.

Bài 2: Cho vuông tại A có , kẻ đường phân giác của . Kẻ vuông góc với tại M. a) Chứng minh .tam giác DAB=tam giác DMB b) Chứng minh:AC<DC c) Gọi K là giao điểm của đường thẳng và đường thẳng , đường thẳng cắt tại N. Chứng minh và cân tại B.

Bài 3: Cho ABC cân tại A, kẻ AH vuông góc với BC ,  a, Chứng minh rằng: ABH= ACH  b, Gọi N là trung điểm của AC Hai đoạn BN và AH cắt nhau tại G, trên tia đối của tia NB lấy K sao cho NK=NG. Chứng minh: G là trọng tâm của tam giác ABC và AG//CK  c, Chứng minh: G là trung điểm BK     Giúp mình với ạ    

3
26 tháng 4 2024

Bài 1

loading...  

a) Do ∆ABC cân tại A (gt)

⇒ AB = AC

Do M là trung điểm của BC (gt)

⇒ BM = MC

Xét ∆AMB và ∆AMC có:

AB = AC (cmt)

BC = MC (cmt)

AM là cạnh chung

⇒ ∆AMB = ∆AMC (c-c-c)

b) Do AD // BC (gt)

⇒ AD // BM

⇒ ∠DAI = ∠MBI (so le trong)

Xét ∆AID và ∆BIM có:

∠DAI = ∠MBI (cmt)

AI = BI (do I là trung điểm của AB)

∠AID = ∠BIM (đối đỉnh)

⇒ ∆AID = ∆BIM (g-c-g)

⇒ AD = BM (hai cạnh tương ứng)

Mà BM = MC (cmt)

⇒ AD = MC

c) ∆AMB = ∆AMC (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

⇒ ∠AMC = ∠EMC = 90⁰

⇒ ∆MCE vuông tại M

Mà AD // BC (cmt)

⇒ AD ⊥ AM

⇒ ∠DAM = ∠DAE = 90⁰

⇒ ∆ADE vuông tại A

Do AD // BC (gt)

⇒ ∠ADE = ∠MCE (so le trong)

Xét hai tam giác vuông: ∆ADE và ∆MCE có:

AD = MC (cmt)

∠ADE = ∠MCE (cmt)

⇒ ∆ADE = ∆MCE (cạnh góc vuông - góc nhọn kề)

⇒ AE = ME (hai cạnh tương ứng)

⇒ E là trung điểm của AM

Do ∆AID = ∆BIM (cmt)

⇒ ID = IM (hai cạnh tương ứng)

⇒ I là trung điểm của MD

∆ADM có:

AI là đường trung tuyến (do I là trung điểm của MD)

DE là đường trung tuyến (do E là trung điểm của AM)

Mà AI và DE cắt nhau tại S

⇒ S là trọng tâm của ∆ADE

⇒ AS = 2SI

⇒ 3AS = 6SI

Lại có:

AI = BI (cmt)

⇒ AB = AI + BI = 3SI + 3SI = 6SI

⇒ AB = 3AS

Mà AB > BC (gt)

⇒ 3AS > BC

Hay BC < 3AS

26 tháng 4 2024

Bài 3

loading...  

a) Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét hai tam giác vuông: ∆ABH và ∆ACH có:

AB = AC (cmt)

AH là cạnh chung

⇒ ∆ABH = ∆ACH (cạnh huyền - cạnh góc vuông)

b) ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung tuyến của ∆ABC

Lại có N là trung điểm của AC (gt)

⇒ BN là đường trung tuyến thứ hai của ∆ABC

Mà AH và BN cắt nhau tại G (gt)

⇒ G là trọng tâm của ∆ABC

Xét ∆ANG và ∆CNK có:

AN = CN (do N là trung điểm của AC)

∠ANG = ∠CNK (đối đỉnh)

NG = NK (gt)

⇒ ∆ANG = ∆CNK (c-g-c)

⇒ ∠AGN = ∠CKN (hai góc tương ứng)

Mà ∠AGN và ∠CKN là hai góc so le trong

⇒ AG // CK

c) Do G là trọng tâm của ∆ABC (cmt)

⇒ AG = 2GN

Lại có:

NG = NK (gt)

⇒ GK = 2GN

Mà BG = 2GN (cmt)

⇒ BG = GK

⇒ G là trung điểm của BK

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có

MB=MC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔMHB=ΔMKC

25 tháng 4 2024

\(x-\dfrac{10}{3}=\dfrac{7}{15}\cdot\dfrac{3}{5}\\ x-\dfrac{10}{3}=\dfrac{7}{25}\\ x=\dfrac{7}{25}+\dfrac{10}{3}\\ x=\dfrac{271}{75}\)

Vậy \(x=\dfrac{271}{75}\)

25 tháng 4 2024

x-10/3=7/25

x=7/25+10/3

x=271/75 nhớ tick nha

26 tháng 4 2024

Em có thể tham khảo nhé: 

My favourite sport is basketball. It's a game that involves two teams, each with five players. I play basketball with my friends almost every day after school. We gather at the local court and spend hours dribbling, shooting, and passing the ball. Basketball is not just about scoring points; it's also about teamwork, strategy, and staying active. I enjoy the fast pace of the game and the thrill of making a great play or sinking a shot. Playing basketball is not only fun but also helps me stay fit and healthy.

14 tháng 10 2024

My name is My

My sport is batmintons and tables tennis is every day after school