Bài 2. (3 điểm) Cho hàm số bậc nhất $y=ax+2$.
a) Xác định hệ số góc $a$, biết rằng đồ thị của hàm số đi qua điểm $M\left(1;3 \right)$.
b) Vẽ đồ thị của hàm số.
c) Tính góc hợp bởi đồ thị hàm số với trục hoành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(4) = 3.√4 + 5 = 3.2 + 5 = 11
f(1/9) = 3.√(1/9) + 5 = 3.1/3 + 5 = 6
f(4) = 3.\(\sqrt{4}+5\) = 11
f(\(\dfrac{1}{9}\)) = 3.\(\sqrt{\dfrac{1}{9}}+5\) = 6
Ta có �2−4�+9=(�−2)2+5⩾5x2−4x+9=(x−2)2+5⩾5.
Suy ra �=1�2−4�+9=1(�−2)2+5⩽15B=x2−4x+91=(x−2)2+51⩽51.
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔKNM~ΔMNP
Xét ΔKNM vuông tại K và ΔKMP vuông tại K có
\(\widehat{KNM}=\widehat{KMP}\left(=90^0-\widehat{KMN}\right)\)
Do đó; ΔKNM~ΔKMP
b: Ta có: ΔKNM~ΔKMP
=>\(\dfrac{KN}{KM}=\dfrac{KM}{KP}\)
=>\(KM^2=KN\cdot KP\)
c: Xét ΔMNP vuông tại M có MK là đường cao
nên \(MK^2=KN\cdot KP\)
=>\(MK^2=4\cdot9=36=6^2\)
=>\(MK=\sqrt{6^2}=6\left(cm\right)\)
PN=PK+NK
=4+9=13(cm)
Xét ΔMNP có MK là đường cao
nên \(S_{MNP}=\dfrac{1}{2}\cdot MK\cdot NP=\dfrac{1}{2}\cdot6\cdot13=3\cdot13=39\left(cm^2\right)\)
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
�^
N chung
Do đó: ΔKNM~ΔMNP
Xét ΔKNM vuông tại K và ΔKMP vuông tại K có
��^=���^(=900−���^)KNM=KMP(=90−KMN)
Do đó; ΔKNM~ΔKMP
KN/KM = KM/KP
b: Ta có ΔKNM~ΔKMP
=>��2=��⋅��KM2 = KN.KP
c: Xét ΔMNP vuông tại M có MK là đường cao
nên ��2=��⋅��MK2=KN2.KP2
MK2 = 42 + 92
MK2= 36
MK =6
\(a,A=\dfrac{x^2-2x+1}{x^2-1}\\ =\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x-1}{x+1}\)
`b,` Khi `x=3` thì :
\(\dfrac{x-1}{x+1}=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
Khi `x=-3/2` thì :
\(\dfrac{-\dfrac{3}{2}-1}{-\dfrac{3}{2}+1}\\ =\dfrac{-\dfrac{3}{2}-\dfrac{2}{2}}{-\dfrac{3}{2}+\dfrac{2}{2}}\\ =\dfrac{-\dfrac{5}{2}}{-\dfrac{1}{2}}\\ =-\dfrac{5}{2}\cdot\left(-2\right)=\dfrac{10}{2}=5\)
`c,` Để `A` nhận giá trị nguyên ta có :
\(\dfrac{x-1}{x+1}=\dfrac{x+1-2}{x+1}=\dfrac{x+1}{x+1}-\dfrac{2}{x+1}\)
Vậy \(x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
`-> x+1=1=>x=0`
`->x+1=-1=>x=-2`
`->x+1=2=>x=1`
`->x+1=-2=>x=-3`
a) 7x + 2 = 0
7x = 0 - 2
7x = -2
x = -2/7
Vậy S = {-2/7}
b) 18 - 5x = 7 + 3x
3x + 5x = 18 - 7
8x = 11
x = 11/8
Vậy S = {11/8}
a) Trong 6 mặt của xúc xắc có 2 mặt là hợp số là 4 và 6
Xác xuất xảy ra biến cố đó là:
\(P=\dfrac{2}{6}=\dfrac{1}{3}\)
b) Trong 6 mặt của xúc xắc có 2 mặt của xúc xắc chia 3 dư 2 là: 2 và 5
Xác xuất xảy ra biến cố đó là:
\(P=\dfrac{2}{6}=\dfrac{1}{3}\)
Đối với điện thoại Oppo
a) là sự lựa chọn của mọi người dùng điện thoại chưa hợp lí vì chỉ có 13/100 người dùng điện thoại Oppo
b) là sự lựa chọn hàng đầu của người dùng điện thoại chưa hợp lí vì chỉ có 13 người dùng, ít hơn so với Iphone (37 người dùng) và Samsung (39 người dùng)
\(B=3x^2+3y^2+z^2+5xy-3yz-3xz-2x-2y+3\)
\(2B=2\cdot\left(3x^2+3y^2+z^2+5xy-3yz-3xz-2x-2y+3\right)\)
\(2B=6x^2+6y^2+2z^2+10xy-6yz-6xz-4x-4y+6\)
\(2B=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2-4x-4y+4\right)+\left(4x^2+4y^2+2z^2+10xy-6yz-6xz+2\right)\)
\(4B=2\left(x-y\right)^2+2\left(x^2+y^2+2^2+2\cdot x\cdot y-2\cdot x\cdot2-2\cdot y\cdot2\right)+2\left(4x^2+4y^2+2z^2+10xy-6yz-6xz+2\right)\)
\(4B=\left(x-y\right)^2+\left(x^2-2xy+y^2\right)+2\left(x+y-2\right)^2+\left(8x^2+8y^2+4z^2+20xy-12yz-12xz+4\right)\)
\(4B=\left(x-y\right)^2+2\left(x+y-2\right)^2+\left(9x^2+9y^2+4z^2+18xy-12yz-12xz+4\right)\)
\(4B=\left(x-y\right)^2+2\left(x+y-2\right)^2+\left[\left(3x\right)^2+\left(3y\right)^2+\left(2z\right)^2+2\cdot3x\cdot3y-2\cdot3x\cdot2z-2\cdot3y\cdot2z\right]+4\)
\(4B=\left(x-y\right)^2+2\left(x+y-2\right)^2+\left(3x+3y-2z\right)^2+4\)
\(B=\dfrac{\left(x-y\right)^2}{4}+\dfrac{\left(x+y-2\right)^2}{2}+\dfrac{\left(3x+3y-2z\right)^2}{4}+1\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{\left(x-y\right)^2}{4}\ge0\forall x,y\\\dfrac{\left(x+y-2\right)^2}{2}\ge0\forall x,y\\\dfrac{\left(3x+3y-2z\right)^2}{4}\ge0\forall x,y,z\end{matrix}\right.\)
\(\Rightarrow B=\dfrac{\left(x-y\right)^2}{4}+\dfrac{\left(x+y-2\right)^2}{2}+\dfrac{\left(3x+3y-2z\right)^2}{4}+1\ge1\forall x,y,z\)
Dấu "=" xảy ra: \(\left\{{}\begin{matrix}x-y=0\\x+y-2=0\\3x+3y-2z=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\2x-2=0\\3x+3x-2z=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=3\end{matrix}\right.\)
Vậy: ...
ca) Hàm số đi qua điểm M(1;3) ta thay x = 1 và y = 3 ta có:
\(3=a\cdot1+2\Leftrightarrow a+2=3\Leftrightarrow a=3-2\Leftrightarrow a=1\)
b) Hàm số cắt Ox tại: \(\left(-2;0\right)\)
Oy tại: \(\left(0;2\right)\)
c) Gọi giao điểm của hàm số với trục Ox là A, với trục Oy là B
Ta có: \(OA=OB=2\Rightarrow\Delta OAB\) cân tại O
\(\Rightarrow\widehat{BAO}=\dfrac{180^o-90^o}{2}=45^o\)