Cho p là số nguyên tố lớn hơn 3 . Hỏi p2 + 2024 là số nguyên tố hay hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3+3^2+3^3+3^4+...+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{99}\right)⋮4\)
A = 31 + 32 + 33 + ... + 3100
Xét dãy số: 1; 2; 3; ...; 100
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100 (số hạng)
Vì 100 : 2 = 50
Nhóm hai số hạng liên tiếp của A vào nhau ta được:
A = (31 + 32) + (32 + 33) + .. + (399 + 3100)
A = 3.(1 + 3) + 33(1 +3) + .. + 399.(1+ 3)
A = (1+ 3).(3 + 33 + ..+ 399)
A = 4.(3 + 33 + ... + 399) ⋮ 4 (đpcm)
Giải:
A = 1111...1 (2022 thừa số 1)
Xét tổng các chữ số của số A là:
1 + 1 + 1 + ... + 1 (2022 số 1)
1 + 1 + 1 + ... + 1 = 1 x 2022 = 2022 ⋮ 3
Vậy A ⋮ 1; 3 ; A (A > 3) Vậy A là hợp số.
4n+1 - 4(n-1) + 42 = 44
4n-1.(42 - 1) = 44 - 42
4n-1.(16 - 1) = 256 - 16
4n-1.15 = 240
4n-1 = 240 : 15
4n-1 = 16
4n-1 = 42
n - 1 = 2
n = 2 + 1
n = 3
Vậy n = 3
Tập hợp B(4) là:
{0;4;8;12;16;20;...}
Vậy nên không có đáp án đúng trong câu hỏi này.
B(4) = {0; 4; 8; 12; 16; 20;...}
Vậy chọn C.{0; 4; 8; 12; 16; 20}
Câu 5:
a: A={0;1;2;3;...;20}
=>A={x\(\in\)N|x<=20}
b: Sửa đề: B={2;5;8;11;14;17;20}
=>B={x\(\in\)N|x=3k+2;0<=k<=6}
d: Sửa đề: D={2;6;12;20;30;42;56}
=>D={x\(\in\)N|x=k(k+1);1<=k<=7}
c: C={1;8;27;64;125}
=>C={x\(\in\)N|x=k3;1<=k<=5}
Câu 6:
a: tập hợp các số tự nhiên không lớn hơn 6 là:
A={0;1;2;3;4;5;6}
b: Các số tự nhiên có hai chữ số và không nhỏ hơn 90 là:
B={90;91;92;93;94;95;96;97;98;99}
c: Các số tự nhiên chia hết cho 3 mà lớn hơn 30; nhỏ hơn 50 là:
C={33;36;39;42;45;48}
d: 4:x=2
=>x=4:2=2(nhận)
=>D={2}
e: x+3<7
=>x<4
mà x là số tự nhiên
nên \(x\in\left\{0;1;2;3\right\}\)
=>E={0;1;2;3}
\(4x^3+12=120\)
\(4x^3=120-12\)
\(4x^3=108\)
\(x^3=108:4\)
\(x^3=27\)
\(x^3=3^3\)
\(Do\) \(đó\) \(x=3\)
Vậy \(x=3\)
XẾP THÀNH 3 ,4,9 HÀNG NGHĨA LÀ SỐ HỌC SINH LỚP ĐÓ LÀ SỐ CHIA HẾT CHO 3,4,9
SUY RA : SỐ HỌC SINH LỚP ĐÓ LÀ 36
Giải:
Vì số học sinh lớp 6A xếp hàng 3, hàng 4 hàng 9 đều vừa đủ nên số học sinh lớp đó là bội chung của 3; 4; 9
3 = 3; 4 = 22; 9 = 32
BCNN(3; 4; 9) = 22.32 = 36
Vậy số học sinh của lớp đó thuộc bội của 36
B(36) = {0; 36; 72; ...}
Vì số học sinh của lớp đó từ 30 đến 40 nên số học sinh lớp đó là:
36 học sinh
Kết luận: Số học sinh của lớp đó là 36 học sinh.
p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3
Suy ra `p^2` luôn chia 3 dư 1
Mà `2024` chia 3 dư 2
Nên `p^2+2024` chia hết cho 3
Do đó `p^2+2024` là hợp số
Giải:
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3
Vì p là số nguyên tố nên p2 là số chính phương
Vì p không chia hết cho 3 nên p2 không chia hết cho 3
⇒ p2 : 3 dư 1 tính chất số chính phương, một số chính phương chia 3 chỉ có thể dư 1 hoặc không dư.
Vậy p2 = 3k + 1
⇒ p2+2024 = 3k + 1 + 2024 = 3k+(1+2024) = 3k + 2025 =3(k+675)⋮3
Vậy p2 + 2024 là hợp số
Kết luận: nếu p là số nguyên tố lớn hơn 3 thì p2 + 2024 là hợp số