Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), chứng minh rằng:
\(a.\frac{4a+9b}{7a-6b}=\frac{4c-9d}{7c-6d}\)
\(b.\frac{a^2}{b^2}=\frac{ac}{bd}=\frac{c^2}{d^2}\)
\(c.\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(b+d\right)^2}{b^2-d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sản phẩm của bạn Dương; Bách; Khôi lần lượt là x, y, z ( x, y, z là số tự nhiên > 0 ).
Theo bài ra ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)
và \(x+z-y=12\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+z-y}{3+2-4}=\frac{12}{1}=12\)
=> \(\frac{x}{3}=12\Rightarrow x=12.3=36\)
\(\frac{y}{4}=12\Rightarrow y=48\)
\(\frac{z}{2}=12\Rightarrow z=24\)
Vậy số sản phẩm của Dương Bách Khôi lần lượt là 36; 48; 24 sản phẩm.
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}\Leftrightarrow\frac{X-1}{2}=\frac{2Y-4}{6}=\frac{3z-9}{12}\)
ADTCDTS=nhau có
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(\frac{x-1-2y+4+3z-9}{8}=\frac{\left(x-2y+3z\right)-\left(1+4-9\right)}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
\(\Rightarrow\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
TỰ KẾT LUẬN NHA CÁC BẠN!!!
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}\Leftrightarrow\frac{X-1}{2}=\frac{2Y-4}{6}=\frac{3z-9}{12}\)
ADTCDTS=nhau có
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(\frac{x-1-2y+4+3z-9}{8}=\frac{\left(x-2y+3z\right)-\left(1+4-9\right)}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
\(\Rightarrow\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
TỰ KẾT LUẬN NHA CÁC BẠN!!!
a) 1,2 : 3,24 = 12/10 : 324/100 = 12/10 . 100/324 = 1/1 . 10/27 = 10/27 = 10:27
b) 2 1/5 : 3/4 = 11/5 : 3/4 = 11/5 . 4/3 = 44/15 = 44:15
c) 2/7 : 0.42 = 2/7 : 42/100 = 2/7 . 100/42 = 2/7 . 50/21 = 100/147 = 100;147
\(\text{Đặt }\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=k\)
\(\Rightarrow\hept{\begin{cases}x=4k\\y=12k\\z=15k\end{cases}\left(1\right)}\)
\(\text{Thay (1) vào y - x = 4 ta có :}\)
\(\Rightarrow12k-4k=4\)
\(\Rightarrow k\left(12-4\right)=4\)
\(\Rightarrow8k=4\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=4.2=8\\y=12.2=24\\z=15.2=30\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow x=\frac{4.1}{2}=\frac{4}{2}=2;\)
\(y=\frac{12.1}{2}=\frac{12}{2}=6;\)
\(z=\frac{15.1}{2}=\frac{15}{2}\)
Vậy \(x=4;y=6;z=\frac{15}{2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Thay a = bk; c = dk vào đẳng thức \(\frac{2a+15b}{5a-7b}=\frac{2a+15d}{5c-7d}\). Ta được:
+, \(\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\)(1)
+, \(\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{2bk+15b}{5bk-7b}=\frac{2dk+15d}{5dk-7d}\)
Hay \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)<đpcm>
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Khi đó : \(\frac{2a+15b}{5a-7b}=\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(1\right)\)
\(\frac{2c+15d}{5c-7d}=\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(2\right)\)
Từ (1) và (2)
=> \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\left(\text{đpcm}\right)\)
cái này dễ mà
kiến thức trong sách í