Cho 4a2 + b2 = 5ab và 2a>b>0. Tính giá trị của biểu thức M= \(\frac{ab}{2a^2-b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(a\ne b\)\(;\)\(a\ne-b\)
\(4a^2+b^2=5ab\)
\(\Leftrightarrow\)\(\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow\)\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\left(loai\right)\\4a=b\end{cases}}}\)
\(\Rightarrow\)\(4a=b\)
\(\Rightarrow\)\(M=\frac{ab}{a^2-b^2}=\frac{a.4a}{\left(a-b\right)\left(a+b\right)}=\frac{4a^2}{\left(a-4a\right)\left(a+4a\right)}=\frac{4a^2}{-15a^2}=\frac{-4}{15}\)
...
\(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=\left(x+2\right)\left[\left(x+2\right)\left(x-2\right)\right]\)
\(=\left(x+2\right)\left(x^2-4\right)=x^3-4x+2x^2-8\)
Thực hiện phép tính
a, 6x3y5z : 3xy3z=2x2y2
b, \(\frac{3x+6}{x+2}+\frac{2x+4}{x+2}\)
\(=\frac{3\left(x+2\right)}{x+2}+\frac{2\left(x+2\right)}{x+2}\)
=3+2=5
a)\(3.3x^3+9x\)
\(=9x.\left(x^2+1\right)\)
b) \(xy+y^2-3x-3y\)
\(y.\left(x+y\right)-3.\left(x+y\right)=\left(x+y\right).\left(y-3\right)\)
\(a,\left(x+2\right)-\left(x-2\right).\left(x+2\right)\)
\(=\left(x+2\right).\left(1-x+2\right)=\left(x+2\right).\left(-x+3\right)\)
\(=-x^2+x+6\)
\(b,3x^2-6x=0\)
\(3x.\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(-3x^2-7x+10\)
\(=3x-3x^2+10-10x\)
\(=3x.\left(1-x\right)+10.\left(1-x\right)=\left(3x+10\right).\left(1-x\right)\)
\(-3x^2+3y^2-4xz-4yz\)
\(=3\left(y^2-x^2\right)-4z\left(x+y\right)\)
\(=3\left(y-x\right)\left(x+y\right)-4z\left(x+y\right)\)
\(=\left(x+y\right)\left(3y-3x-4z\right)\)
Ta có: \(4a^2+b^2=5ab\)
\(\Leftrightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\).Mà \(2a>b>0\Rightarrow4a>b>0\Rightarrow4a-b>0\)
Do đó \(a-b=0\Leftrightarrow a=b\)
Thay b bởi a,ta có: \(M=\frac{ab}{2a^2-b^2}=\frac{a^2}{2a^2-a^2}=\frac{a^2}{a^2}=1\)