a. \(\frac{4x^2-8xy}{10y-5x}\)
b. \(\frac{^{x^2}-4x+3}{x^2-6x+9}\)
c. \(\frac{2x^3-18x}{x^4-81}\)
Nhờ các bn giải giúp nha
cám ơn trc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+2\right)\left(x-1\right)\left(x+5\right)\left(x+8\right)\)
\(A=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x-1\right)\left(x+8\right)\right]\)
\(A=\left(x^2+7x+10\right)\left(x^2+7x-8\right)\)
Đặt \(t=x^2+7x+1\)ta có :
\(A=\left(t+9\right)\left(t-9\right)\)
\(A=t^2-9^2=t^2-81\ge-81\)
Dấu "=" xảy ra \(\Leftrightarrow x^2+7x+1=0\)
Kẻ \(DI\perp BC,EK\perp BC\left(I,K\in BC\right)\Rightarrow DI//EK\Rightarrow\widehat{IDF}=\widehat{KEF}\) (so le trong)
\(\widehat{B}=\widehat{KCE}\left(=\widehat{ACB}\right)\)
\(\Delta DIB=\Delta EKC\left(ch-gn\right)\Rightarrow DI=EK\) (2 cạnh t/ứ)
\(\Delta IDF=\Delta KEF\left(g.c.g\right)\Rightarrow DF=EF\)
Vậy F là trung điểm của DE.
Đặt \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)
\(=n^2(n^4-1+n^2-1)\)
\(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)
\(=n^2(n^2-1)(n^2+2)\)
\(=n\cdot n(n-1)(n+1)(n^2+2)\)
+ Nếu n chẵn ta có n = 2k \((k\in N)\)
\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)
\(\Rightarrow A⋮8\)
+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)
\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)
\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
\(\Rightarrow A⋮8\)
Do đó A chia hết cho 8 với mọi \(n\in N\)
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n \(\in N\)
Chúc bạn học tốt :>