Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




15 phút = 1/4 giờ
Đặt quãng đường AB là S ta có
\(\frac{S}{40}-\frac{S}{50}=\frac{1}{4}\Rightarrow S=50\)
Quãng đường AB dài 50km


đặt \(l\left(x\right)=-x^2-2x+1+3m\) dễ thấy \(3m-7\le g\left(x\right)\le3m+1\) (đạo hàm hoặc tư duy)
Để \(y_{max}=7\) trên \(\left[0;2\right]\) thì :
TH1 : \(\hept{\begin{cases}3m+1=7\\3m-7>-7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\\m>0\end{cases}}\Leftrightarrow m=2\)
\(\hept{\begin{cases}3m+1=-7\\3m-7< 7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{-8}{3}\\m< \frac{14}{3}\end{cases}}\Leftrightarrow m=\frac{-8}{3}\)
...

do có hai căn nên mình không vội tìm điều kiện mà sẽ giải rồi sau đó thử nghiệm xem thỏa mãn điều kiện căn hay không
ta có \(PT\Leftrightarrow\hept{\begin{cases}x\ge0\\4-\sqrt{x+4}=x^2\end{cases}}\)\(\Leftrightarrow\left(x+4\right)-\sqrt{x+4}+\frac{1}{4}=x^2+x+\frac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x+4}-\frac{1}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)do \(x\ge0\Rightarrow\sqrt{x+4}-\frac{1}{2}\ge0\)
\(\Rightarrow\sqrt{x+4}-\frac{1}{2}=x+\frac{1}{2}\Leftrightarrow\sqrt{x+4}=x+1\Leftrightarrow x+4=x^2+2x+1\)
\(\Leftrightarrow x^2+x-3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{13}}{2}\\x=\frac{-1-\sqrt{13}}{2}\end{cases}}\)
thay lại phương trình ban đầu ta có nghiệm duy nhất \(x=\frac{-1+\sqrt{13}}{2}\)