K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

\(pt\Leftrightarrow y^2\left(x^2-7\right)-\left(x+y\right)^2=0.\)

\(\Leftrightarrow y^2\left(x^2-7\right)=\left(x+y\right)^2\)

\(\Leftrightarrow\)/y/\(\sqrt{x^2-7}\)= /x+y/  (1)

vì VP nguyên nên VT phải nguyên.==> \(x^2-7\)là 1 số CP

Ta có \(x^2-7=a^2\Leftrightarrow\left(x-a\right)\left(x+a\right)=7\)

Đến đay bạn xét từng trường hợp . Tìm ra x và a thay (1) rồi tìm ra y

Ta có các cặp (x,y)=(4,2); (4;-1) ;(-4;-2) ;(-4;1)

31 tháng 12 2017

Cái này thì mk chịu lun

31 tháng 12 2017

Đặt A=n^4+n^3+1 

với n=1=>A=3=>loại

với n\(\ge\)2 ta có: (2n2+n−1)2< 4A ≤(2n2+n) => 4A = ( 2n2+ n ) => n = 2 ( thỏa mãn )

1 tháng 1 2018

- bạn trả lời rõ ra 1 chút đc ko?

9 tháng 10 2018

a) \(M=\frac{a+1}{\sqrt{a}}+\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{a\sqrt{a}\left(\sqrt{a}-1\right)+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)

\(M=\frac{a+1}{\sqrt{a}}+\frac{a+\sqrt{a}+1}{\sqrt{a}}+\frac{\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-a\sqrt{a}}\)

\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)}\)

\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{a-\sqrt{a}+1}{\sqrt{a}}\)

\(M=\frac{3a+3}{\sqrt{a}}\)

Xét \(M-4=\frac{3a+3}{\sqrt{a}}-4=\frac{3a-4\sqrt{a}+3}{\sqrt{a}}=\frac{3\left(\sqrt{a}-\frac{2}{3}\right)^2+\frac{5}{3}}{\sqrt{a}}>0\forall x\in TXĐ\)

Vậy \(M>4.\)

b) \(N=\frac{6}{M}=\frac{6}{\frac{3a+3}{\sqrt{a}}}=\frac{2\sqrt{a}}{a+1}=\frac{2}{\sqrt{a}+\frac{1}{\sqrt{a}}}\)

Để N nguyên thì \(\sqrt{a}+\frac{1}{\sqrt{a}}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Áp dụng bất đẳng thức Cosi cho hai số dương, ta có  \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\Rightarrow\sqrt{a}+\frac{1}{\sqrt{a}}=2\)

 \(\sqrt{a}+\frac{1}{\sqrt{a}}=2\Leftrightarrow a=1\)   (Vô lý)

Vậy không tồn tại giá trị của a để N nguyên.

chị quản lí làm sai rùi