Chứng minh rằng a/b + b/a lớn hơn hoặc bằng 2 với mọi a,b thuộc N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:Xét hiệu \(\frac{a}{b}+\frac{b}{a}-2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)(Vì\(a,b\inℕ^∗\))
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)(Đấu "=" xảy ra khi và chỉ khi a=b)(đpcm)
\(\Delta\)ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí)
mà \(\widehat{B}=\widehat{C}\)
=> \(\widehat{A}+2\widehat{B}=180^0\)
=> \(\widehat{A}=180^0-2\widehat{B}\)
=> \(180^0-2\widehat{B}=80^0\)
=> \(2\widehat{B}=100^0\)
=> \(\widehat{B}=50^0\)
Do đó \(\widehat{B}=\widehat{C}=50^0\)
Ta có : BD = BA => \(\Delta\)ABD cân tại B => \(\widehat{BAD}=\widehat{BDA}\)
\(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{B}}{2}=\frac{180^0-50^0}{2}=65^0\)
=> \(\widehat{BAD}=65^0\)
CE = CA => \(\Delta\)ACE cân tại C => \(\widehat{CAE}=\widehat{CEA}\)
Do đó \(\widehat{CAE}=\widehat{CEA}=\frac{180^0-\widehat{C}}{2}=\frac{180^0-50^0}{2}=65^0\)
=> \(\widehat{CAE}=65^0\)
Xét \(\Delta\)DAE theo định lí tổng ba góc trong 1\(\Delta\))
=> \(\widehat{BAD}+\widehat{CAE}+\widehat{DAE}=180^0\)
=> \(65^0+65^0+\widehat{DAE}=180^0\)
=> \(\widehat{DAE}=180^0-130^0=50^0\)
Vậy \(\widehat{DAE}=50^0\)
Bạn tham khảo tại đây nhé!
https://h.vn/hoi-dap/question/142377.html
Ta xét tam giác NEA và tam giác NBC
NE = NC ( N là trung điểm EC )
góc ANE = góc BNC ( hai góc đối đỉnh )
NA = NB ( gt )
=> tam giác NAE = tam giác NBC
=> góc EAN = góc ABC ( hai góc tương ứng ) (1)
Chứng minh tương tự: tam giác MAD = tam giác MBC
=> góc DAM = góc ACB ( hai góc tương ứng ) (2)
Ta có : góc ABC + góc ACB + góc BAC = 180 ( tổng ba góc trong tam giác )
(1),(2)=> góc EAB + góc BAC + góc DAC = 180
=> Ba điểm E, D. A thẳng hàng
+) Xét \(x=0\)
\(\Rightarrow\left(3y+1\right)\left(y+1\right)=21\)
\(\Rightarrow3y+1;y+1\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Mà \(3y+1\) chia \(3\) dư \(1;-2\)
\(\Rightarrow3y+1\in\left\{1;-2;7\right\}\)
\(\Rightarrow y\in\left\{0;-1;2\right\}\)
+) Với \(y=0\)
\(\Rightarrow y+1=1\) ( loại )
+) Với \(y=-1\)
\(\Rightarrow y+1=0\) ( loại )
+) Với \(y=2\)
\(\Rightarrow y+1=3\) ( thỏa mãn )
+) Xét \(x\ne0\)
\(\Rightarrow2^{\left|x\right|}+x\left(x+1\right)\) chẵn
\(\Rightarrow y\) lẻ
\(\Rightarrow2x+3y+1\) chẵn
Mà \(21\) lẻ
\(\Rightarrow x\ne0\) phương trình vô nghiệm
Vậy \(\left(x;y\right)=\left(0;2\right)\)
Giải
Ta có : \(\frac{9}{11}-0,81=\frac{9}{11}-\frac{81}{100}=\frac{9}{1100}=\frac{9}{11}.\frac{1}{100}\)
\(\frac{9}{11}.\frac{1}{10^2}< \frac{1}{10^2}\)( vì \(\frac{9}{11}< 1\))
Do đó : \(\frac{9}{11}-0,81< \left(\frac{1}{10}\right)^2\)
Nên \(\left(\frac{9}{11}-0,81\right)^{2003}< \left(\frac{1}{10}\right)^{4006}=\)0,00...0 1
\---/
4005 chữ số 0
Vậy tổng cần tìm là 0
P/s : Đầu bài sai sai xin sửa đầu bài thành
Viết số \(\left(\frac{9}{11}-0,81\right)^{2012}\) dưới dạng số thập phân. Hãy tính tổng của \(4000\) chữ số thập phân đầu tiên của số này
Giải
Ta có : \(\left(\frac{9}{11}-0,81\right)^{2012}=\left(\frac{9}{11}-\frac{81}{100}\right)^{2012}\)
\(=\left(\frac{9}{1100}\right)^{2012}\)
\(=\left(\frac{9}{11}.\frac{1}{100}\right)^{2012}\)
\(=\left(\frac{9}{11}\right)^{2012}.\left(\frac{1}{100}\right)^{2012}\)
\(=\left(\frac{9}{11}\right)^{2012}.\left(\frac{1}{10^2}\right)^{2012}\)
Ta có : \(\frac{9}{11}< 1\)
\(\Rightarrow\left(\frac{9}{11}\right)^{2012}< 1\)
\(\Rightarrow\left(\frac{9}{11}\right)^{2012}.\left(\frac{1}{10^2}\right)^{2012}< \left(\frac{1}{10^2}\right)^{2012}\)
\(\Rightarrow\left(\frac{9}{11}\right)^{2012}.\left(\frac{1}{10^2}\right)^{2012}< \left(\frac{1}{10}\right)^{4024}\)
\(\Rightarrow\left(\frac{9}{11}-0,81\right)^{2012}< \left(\frac{1}{10}\right)^{4024}=0,000...01\) (\(4024\) chữ số \(0\))
Vậy tổng của \(4000\) chữ số thập phân đầu tiên của số này là : \(0+0+...+0=0\)
Tham khảo tại link : https://olm.vn/hoi-dap/detail/98893470469.html
giả sử a\(\ge\)b không làm mất đi tính chất tổng quát của bài.
\(\Rightarrow\)a = m + b [ m \(\ge\)0]
ta có :
\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}\)\(\frac{b}{b+m}=1+\frac{m+b}{b+m}\)\(=1+1=2\)
\(vậy\)\(\frac{a}{b}+\frac{b}{a}\ge2(ĐPCM)\)