Thực hiện phép tính
\(\left(x^2y-\frac{1}{2}xy+y^2\right).\left(x-\frac{1}{2}y\right)-x^2y\left(x-\frac{1}{2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x}{x-1}+\frac{x}{x+1}+\frac{2x^2}{1-x^2}\)
\(A=\frac{x}{x-1}+\frac{x}{x+1}+\frac{-2x^2}{x^2-1}\)
\(A=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{-2x^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{x^2+x+x^2-x-2x^2}{\left(x+1\right)\left(x-1\right)}=\frac{1}{\left(x+1\right)\left(x-1\right)}\)
đề s ý
C. \(\left(3x-1\right)^2=\left(1-3x\right)^2\)
Vì ta có \(|3x-1|=|1-3x|\)
\(\Rightarrow\left(3x-1\right)^2=\left(1-3x\right)^2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Rightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-ac-bc\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)
\(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự: \(b^2+2ac=\left(b-c\right)\left(b-a\right)\)
\(c^2+2ab=\left(a-c\right)\left(b-c\right)\)
\(B=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}+\frac{ca+1}{\left(b-a\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}-\frac{ca+1}{\left(a-b\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)\)
\(=\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-b\right)-\left(ca+1\right)\left(b-c\right)+\left(ab+1\right)\left(a-b\right)\)
\(=\left(b-c\right)\left(bc+1-ca-1\right)+\left(a-b\right)\left(ab+1-ca-1\right)\)
\(=\left(b-c\right)\left(bc-ca\right)+\left(a-b\right)\left(ab-ca\right)\)
\(=\left(b-c\right)c\left(b-a\right)+\left(a-b\right)a\left(b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Vậy B = 1
a: Xét ΔABC có
M là trung điểm của BA
N la trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của DC
Do đó: QP là đường trug bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Xét tứ giác MDPB có
MB//DP
MB=DP
Do đó: MDPB là hình bình hành
c: Xét ΔCDK có
P là trung điểm của CD
PL//DK
DO đó:L là trung điểm của CK
=>CL=LK(1)
Xét ΔALB có
Mlà trung điểm của AB
MK//LB
Do đó:K là trung điểm của AL
=>AK=KL(2)
Từ (1) và (2) suy ra AK=KL=LC