Cho hàm số $y = \dfrac{x+2}{2x+3}$ có đồ thị $(C)$. Đường thẳng $y=ax+b$ là tiếp tuyến của $(C)$ và cắt trục hoành tại $A$, cắt trục tung tại $B$ sao cho $AOB$ là tam giác vuông cân tại $O$, $O$ là gốc tọa độ. Xác định $a$ và $b$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N(x_0;y_0)N(x0;y0) là tiếp điểm của tiếp tuyến đã cho.
Phương trình tiếp tuyến dd có dạng: y = (4x_0^3+2x_0)(x-x_0)+x_0^4+x_0^2+1y=(4x03+2x0)(x−x0)+x04+x02+1.
M \in dM∈d nên 3 = (4x_0^3+2x_0)(-1-x_0)+x_0^4+x_0^2+1 \Leftrightarrow 3x_0^4+4x_0^3+x_0^2+2x_0+2=03=(4x03+2x0)(−1−x0)+x04+x02+1⇔3x04+4x03+x02+2x0+2=0
\Leftrightarrow (x_0+1)^2(3x_0^2-2x_0+2) = 0 \Leftrightarrow x_0 = -1 \Rightarrow y_0 = 3⇔(x0+1)2(3x02−2x0+2)=0⇔x0=−1⇒y0=3 và y'(x_0)=-6y′(x0)=−6.
Phương trình tiếp tuyến là y = -6x-3.y=−6x−3.
Xét tiếp tuyênd với (C) tại điểm có hoành độ x0 bất kì trên (C)
Khi đó hệ số góc của tiếp tuyến đó là: y'=-x20-4x0-3=1-(x0+2) =< 1 với mọi x
TXĐ : R
y' =3x2 - 3
tiếp tuyến d song song với ox nếu hệ số góc bằng 0 nên ta có phương trình 0 = 3x2 -3 => x = 1 hoặc x= -1
Đặt f(x) = 4x3 - 8x2 + 1
f(x) là hàm đa thức nên liên tục trên R nên:
f(x) liên tục trên [-1; 2].
Ta có: f(-1) = -11 và f(2) = 1 ⇒ f(−1).f(2)=−11<0 nên tồn tại x_0 \in (-1;2)x0 ∈ (−1; 2) để f(x_0)=0f(x00)=0.
\left\{ \begin{aligned} & f(-1)=-11\\ & f(2)=1 \end{aligned} \right. \Rightarrow f(-1).f(2) = -11 < 0 Vậy phương trình đã cho có ít nhất 1 nghiệm trong khoảng (-1 ; 2 ).
Hàm số f(x)=4x3-8x2+1 liên tục trên R
Ta có f(-1)=-11,f(2)=1 nên f(-1);f(2) <0
Do đó theo tính chất hàm số liên tục, phương trình đã có có ít nhất 1 nghiệm thuộc khoảng (-1;2)
xét m=1 và m=-1 thì pt luôn có nghiệm
xét m#1 và m#-1
đặt f(x)=(1−m2)x5−3x−1(1−m2)x5−3x−1
f(x)liên tục trên R nên f(x) lt trên [-1,0]
f(-1)=m2+1m2+1>0
f(0)=-1
f(-1)*f(0)<0 suyra ( đpcm ) .
Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)
Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)
Vậy d(A,(SCD))=AH
Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)
Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)
E=AB∩CD,G=EN∩SB⇒GE=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.
d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14hd(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h
Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2⇒h=a√66111h2=1AN2+1AE2+1AD2=116a2⇒h=a6611
Vậy d(M,(NCD))=a√6644.d(M,(NCD))=a6644.
Dựng CH _|_ AB => CH _|_ (SAB)
Giả sử MN cắt AD tại F. Theo định lý Talet ta có:
\(\frac{DF}{MC}=\frac{ND}{NC}=\frac{1}{2}\Rightarrow DF=\frac{MC}{2}=\frac{a}{4}\)
Khi đó \(\frac{PA}{PC}=\frac{AF}{MC}=\frac{5}{2}\Rightarrow\frac{CA}{PA}=\frac{7}{5}\)
Do đó: d (P;(SAB))=\(\frac{5}{7}d\left(C;\left(SAB\right)\right)=\frac{5}{7}CH=\frac{5}{7}\cdot\frac{a\sqrt{3}}{2}=\frac{5a\sqrt{3}}{14}\)
em gửi hình ảnh
y′=(2x+3)2−1.
Đường thẳng y = ax+by=ax+b là tiếp tuyến của đường cong (C)(C) khi hệ phương trình sau có nghiệm:
\left\{\begin{aligned} &\dfrac{x+2}{2x+3} = ax+b\\ &a = \dfrac{-1}{(2x+3)^2} (1)\\ \end{aligned}\right.⎩⎪⎪⎪⎨⎪⎪⎪⎧2x+3x+2=ax+ba=(2x+3)2−1(1)
Mà tiếp tuyến của (C)(C) cắt trục hoành tại AA, cắt trục tung tại BB sao cho AOBAOB là tam giác vuông cân tại OO nên a = -1a=−1 và b \ne 0 (2).b=0(2).
Từ (1)(1) và (2)(2) suy ra \left[\begin{aligned} &2x+3=1\\ &2x+3=-1\\ \end{aligned}\right. \Leftrightarrow \left[\begin{aligned} &x = -1\\ &x = -2\\ \end{aligned}\right. \Leftrightarrow \left[\begin{aligned} &b = 0 (l)\\ &b = -2 (tm) \end{aligned}\right. \Rightarrow a+b = -3.[2x+3=12x+3=−1⇔[x=−1x=−2⇔[b=0(l)b=−2(tm)⇒a+b=−3.