TÍNH GIÁ TRỊ BIỂU THỨC
(2+1) (2\(^2\)+1) (2\(^4\) +1)... (2\(^{64}\)+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{2x+2}=x^3+9x^2+26x+28\)
\(\Rightarrow\left(2x+2\right)^3=\left(x+3\right)^3+1\)
\(\Rightarrow\left(2x+2\right)^3-\left(x+3\right)^3=1\)
\(\Rightarrow\left(2x+2-x-3\right)\left[\left(2x+2\right)^2+\left(2x+2\right)+\left(x+3\right)^2\right]=1\cdot1=\left(-1\right)\left(-1\right)\)
\(\Rightarrow\left(x-1\right)\left[\left(2x+2\right)^2+\left(2x+2\right)\left(x+3\right)+\left(x+3\right)^2\right]=1\cdot1=\left(-1\right)\left(-1\right)\)
Với:\(x-1=1\Rightarrow x=2\)
Thay vào thừa số thứ 2 thấy sai nên loại
Với:\(x-1=-1\)
\(\Rightarrow x=0\)
Thay vào thừa số thứ 2 thấy sai nên loại.
Vậy phương trình vô nghiệm.
tth xem có đúng ko nha!cao cấp quá!Nếu sai thì ib vs mình:))
\(\left(x+1\right)^4+\left(x-1\right)^4\)
\(=\left(x+1\right)^2.\left(x+1\right)^2+\left(x-1\right)^2.\left(x-1\right)^2\)
\(=\left(x^2+2x+1\right).\left(x^2+2x+1\right)+\left(x^2-2x+1\right).\left(x^2-2x+1\right)\)
\(=x^4+2x^3+x^2+2x^3+4x^2+2x+x^2+2x+1+x^4-2x^3+x^2-2x^3+4x^2-2x+x^2-2x+1\)
\(=2x^4+12x^2+2\)
ĐK: \(x\ne\frac{m}{2},x\ne\frac{1}{2}\)
Pt <=> (x+2)(2x-1)=(2x-m)(x+1)
<=> \(2x^2+3x-2=2x^2-mx+2x-m\)
<=> (m+1)x=2-m (1)
Phương trình ban đầu có nghiệm duy nhất khi và chỉ khi phương trình (1) có nghiệm duy nhất khác m/2 và khác 1/2
<=> \(\hept{\begin{cases}m+1\ne0\\\frac{\left(m+1\right)m}{2}\ne2-m\\\frac{\left(m+1\right).1}{2}\ne2-m\end{cases}}\)
Em làm tiếp nhé!
Sai đề kìa
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}\Leftrightarrow x=y\)
haiz!chán vcl nên mới trả lời câu này
Áp dụng bất đẳng thức AM-GM,ta có:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
dấu "=" xảy ra khi và chỉ khi \(x=y\)
\(\Rightarrow you\)sai đề
\(A=\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)
\(A=1\cdot\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)
\(A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)
\(A=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\)
\(A=\left(2^{64}-1\right)\left(2^{64}+1\right)\)
\(A=2^{128}-1\)
ttpq_Trần Thanh Phương đúng đó !!!