K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

a) \(x^2-25-4xy+4y^2\)

\(=\left(x^2-4xy+4y^2\right)-25\)

\(=\left(x-2y\right)^2-5^2\)

\(=\left(x-2y-5\right)\left(x-2y+5\right)\)

b) \(x^2-8x+15\)

\(=x^2-3x-5x+15\)

\(=x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x-5\right)\)

a)\(x^2-25-4xy+4y^2\Leftrightarrow\left(x^2-4xy+4y^2\right)-25\)

\(\Leftrightarrow\left(x-2y\right)^2-5^2\)

\(\Leftrightarrow\left(x-2y-5\right)\left(x-2y+5\right)\)

b)\(x^2-8x+15\Leftrightarrow\left(x-3\right)\left(x-5\right)\)

10 tháng 12 2018

\(a,\left(x-2\right).\left(x-3\right)-\left(x+3\right).\left(x-3\right)\)

\(=\left(x-3\right).\left(x-2-x+3\right)=x-3\)

\(b,\frac{\left(x^2+4x+4\right)}{x+2}-4x+5=\frac{\left(x+2\right)^2}{x+2}-4x+5\)

\(x+2-4x+5=-3x+7\)

10 tháng 12 2018

a) \(\left(x-2\right)\left(x-3\right)-\left(x+3\right)\left(x-3\right)\)

\(=\left(x^2-5x+6\right)-\left(x^2-9\right)\)

\(=x^2-5x+6-x^2+9\)

\(=15-5x\)

b) \(\left(x^2+4x+4\right):\left(x+2\right)-\left(4x-5\right)\)

\(=\left(x+2\right)^2:\left(x+2\right)-\left(4x-5\right)\)

\(=\left(x+2\right)-4x+5\)

\(=x+2-4x+5\)

\(=7-3x\)

10 tháng 12 2018

Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

10 tháng 12 2018

Theo giả thiết,ta có: \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Ta lại có: \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

10 tháng 12 2018

a)\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

A xác định

\(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\\left(x+3\right)\left(x-2\right)\ne0\\x\ne2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

Vậy A xác định \(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

b) \(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x^2-2x\right)+\left(3x-6\right)}+\frac{1}{2-x}\)

\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{x.\left(x-2\right)+3.\left(x-2\right)}+\frac{1}{2-x}\)

\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}+\frac{1}{2-x}\)

\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{\left(x^2+3x\right)-\left(4x+12\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x.\left(x+3\right)-4.\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x-4}{x-2}\left(x+3\ne0\right)\)

c) \(A=-\frac{3}{4}\)

\(\Leftrightarrow\frac{x-4}{x-2}=-\frac{3}{4}\)

\(\Leftrightarrow4.\left(x-4\right)=-3.\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\frac{22}{7}\)

Vậy \(x=\frac{22}{7}\)

Tham khảo nhé~

10 tháng 12 2018

Ta có:

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

                             đpcm

Tham khảo nhé~

\(x^3+2x^2+x+2\)

\(=x.x.x+x.1+2x^2+2.1\)

\(=x\left(x^2+1\right)+2\left(x^2+1\right)\)

\(=\left(x+2\right)\left(x^2+1\right)\)

\(x^3+2x^2+x+2\)

\(=\left(x^3+2x^2\right)+\left(x+2\right)\)

\(=x^2\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+1\right)\)

10 tháng 12 2018

\(\left|5-3x\right|=3x-5\)

\(\Rightarrow5-3x\le0\)

\(\Leftrightarrow5\le3x\)

\(\Leftrightarrow x\ge\frac{5}{3}\)

Vậy \(x\ge\frac{5}{3}\)