Giải phương trình sau:
căn(x^2 - 1/4*căn(x^2 + x + 1/4)) = 1/2*(2x^3 + x^2 + 2x + 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau tìm nơi gõ công thức và gõ hẳn ra nhé e <3
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(\frac{2^2}{2}\right)^2}{2}=...\text{(tự tính nhé :)}\)
Khi \(x=y=1\)
ta có \(\left(\sqrt{x^2+3}-x\right)\left(\sqrt{x^2+3}+x\right)=x^2+3-x^2=3\)
=>\(\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)
tương tự, ta có \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\)
+ 2 vế của 2 đẳng thức đó, ta có \(\sqrt{x^2+3}-x+\sqrt{y^2+3}-y=\sqrt{x^2+3}+x+\sqrt{y^2+3}+y\)
<=>\(0=2\left(x+y\right)\Leftrightarrow x+y=0\)
vậy E=0
^_^