K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

đậu fuck

29 tháng 1 2019

Tớ sẽ chứng minh đề sai:

\(\hept{\begin{cases}x+y=1\\xy=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=1\\2xy=2\end{cases}}\Rightarrow x^2+4xy+y^2=3\) (Cộng theo vế)

Thay xy = 1 vào: \(x^2+y^2+4=3\Leftrightarrow x^2+y^2=-1\)

Mà \(x^2;y^2\ge0\forall x;y\)

Vậy tính A "=" niềm tin à? vì không có gì x,y nào thỏa mãn để tính cả!

28 tháng 1 2019

Đặt x = 2a; y = -5b.

Áp dụng đẳng thức Bunhiacopski ta có:

\(\left(3x+y\right)^2\le\left(x^2+y^2\right)\left(9+1\right)\Rightarrow x^2+y^2\ge\frac{1}{10}\)

Hay: \(4a^2+25b^2\ge\frac{1}{10}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{1}{y}\Leftrightarrow3y=x\Leftrightarrow-15b=2a\Leftrightarrow6a=-45b\)

\(\Leftrightarrow b=-\frac{1}{50};a=\frac{3}{20}\)

28 tháng 1 2019

\(T=\frac{1}{a^2+b^2+3}+\frac{1}{2ab}\)

\(T=\frac{1}{a^2+b^2+3}+\frac{1}{5ab}+\frac{3}{10ab}\)

Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\left(x,y>0\right)\)

          \(2ab\le a^2+b^2\Leftrightarrow4ab\le\left(a^2+b^2+2ab\right)\Leftrightarrow2ab\le\frac{\left(a+b\right)^2}{2}\)

Áp dụng:

\(T\ge\frac{4}{a^2+b^2+3+5ab}+\frac{3}{5.\frac{\left(a+b\right)^2}{2}}\ge\frac{4}{\left(a+b\right)^2+3+1,5.\frac{\left(a+b\right)^2}{2}}+\frac{3}{5.\frac{2^2}{2}}=\frac{4}{2^2+3+1,5.\frac{2^2}{2}}+\frac{3}{5.2}=\frac{4}{10}+\frac{3}{10}=\frac{7}{10}\)Dấu " = " xảy ra \(\Leftrightarrow a=b=1\)( lát giải thích sau )

28 tháng 1 2019

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\\frac{1}{a^2+b^2+3}=\frac{1}{5ab}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\a^2+b^2+3=5ab\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\\left(a+b\right)^2-2ab+3=5ab\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\4+3=5ab+2ab\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\7=7ab\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\ab=1\end{cases}}\Leftrightarrow a=b=1\)

Bổ sung thêm:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y>0)

Dấu " = '" xảy ra <=> x=y

\(2ab\le a^2+b^2\)

Dấu " = '" xảy ra <=> a=b

27 tháng 1 2019

Giả sử x>0

\(x^2+x+3-\left(x-1\right)^2=x^2+x+3-x^2+2x-1=3x+2>0\)

\(\left(x+2\right)^2-x^2-x-3=x^2+4x+4-x^2-x-3=3x+1>0\)

\(\Rightarrow\left(x-1\right)^2< x^2+x+3< \left(x+2\right)^2\)

\(\Rightarrow y^2=\orbr{\begin{cases}x^2\\\left(x+1\right)^2\end{cases}}\)

Với \(y^2=x^2\)

\(\Rightarrow x^2+x+3=x^2\Leftrightarrow x+3=0\Leftrightarrow x=-3\)(loại)

\(y^2=\left(x+1\right)^2\)

\(\Rightarrow x^2+x+3=x^2+2x+1\)

\(\Rightarrow2=x\)(t/m)

Thay x = 2 \(\Rightarrow y^2=4+2+3=9\Leftrightarrow y=\pm3\)

Vậy \(x=2;y=\pm3\left(tm\right)\)

27 tháng 1 2019

vì sao lại giả sử x>0?

26 tháng 1 2019

\(2x^3-2x+x^2-1=4x^2-2x-2\)

\(2x^3-2x+x^2-1-4x^2+2x+2=0\)

\(2x^3-3x^2+1=0\)

\(2x^3-2x^2-x^2+1=0\)

\(2x^2.\left(x-1\right)-\left(x^2-1\right)=0\)

\(2x^2.\left(x-1\right)-\left(x-1\right).\left(x+1\right)=0\)

\(\left(x-1\right).\left(2x^2-x-1\right)=0\)

*) \(x-1=0\Rightarrow x=1\)

*)\(2x^2-x-1=0\Rightarrow2x^2-2x+x-1=0\Rightarrow2x.\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right).\left(2x+1\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)

Vậy ...

26 tháng 1 2019

mik ví dụ 1 biểu thức nha

a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c

tương tự với mấy biểu thức còn lại

26 tháng 1 2019

cái bài này mik làm rồi mà giờ ko nhớ nữa

26 tháng 1 2019

sử dụng BDT cosi là ra bn à

26 tháng 1 2019

\(x^2-12+\frac{36}{x^2}-4x+\frac{24}{x}=5\)

\(\Leftrightarrow x^2+\frac{36}{x^2}-4x+\frac{24}{x}=5+12\)

\(\Leftrightarrow x^2+\frac{36}{x^2}-4x+\frac{24}{x}=17\)

\(\Leftrightarrow x^2.x^2+\frac{36}{x^2}.x^2-4x.x^2+\frac{24}{x}.x^2=17x^2\)

\(\Leftrightarrow x^4+36-4x^3+24x=17x^2\)

\(\Leftrightarrow x^4+36-4x^3+24x=17x^2-17x^2\)

\(\Leftrightarrow x^4+36-4x^3+24x=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Rightarrow x\in\left\{-1;2;-3;4\right\}\)

25 tháng 1 2019

??????????????????????

25 tháng 1 2019

A B C D M E F K H S I J

a) Bằng tính chất của hình bình hành và hệ quả ĐL Thales ta có: 

\(\frac{KM}{KH}=\frac{BF}{BC}=\frac{MF}{DC}=\frac{MF}{EF}\). Suy ra KF // EH (Theo ĐL Thales đảo) (đpcm).

b) Gọi giao điểm của EK và HF là S. Ta đi chứng minh B,D,S thẳng hàng. Thật vậy:

Gọi MS cắt EH và KF lần lượt ở I và J.

Theo bổ đề hình thang (cho hình thang KEHF) thì I là trung điểm EH và J là trung điểm KF

Do các tứ giác BKMF và DEMH là hình bình hành nên BD đi qua trung điểm của EH và KF 

Từ đó suy ra: 2 đường thẳng BD và MS trùng nhau hay 3 điểm B,D,S thẳng hàng => ĐPCM.

c) Dễ thấy: SKEF = SKHF (Chung đáy KF, cùng chiều cao vì KF//EH) => SKME = SFMH 

Mà SMKAE = 2.SKME; SMHCF = 2.SFMH nên SMKAE = SMHCF (đpcm).