tìm các số x,y,z biết x^2+y^2+z^2=xy+yz+zx và x^2015+y^2015+z^2015=9^1008
các bạn xem bài này có sai đề không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ sẽ chứng minh đề sai:
\(\hept{\begin{cases}x+y=1\\xy=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=1\\2xy=2\end{cases}}\Rightarrow x^2+4xy+y^2=3\) (Cộng theo vế)
Thay xy = 1 vào: \(x^2+y^2+4=3\Leftrightarrow x^2+y^2=-1\)
Mà \(x^2;y^2\ge0\forall x;y\)
Vậy tính A "=" niềm tin à? vì không có gì x,y nào thỏa mãn để tính cả!
Đặt x = 2a; y = -5b.
Áp dụng đẳng thức Bunhiacopski ta có:
\(\left(3x+y\right)^2\le\left(x^2+y^2\right)\left(9+1\right)\Rightarrow x^2+y^2\ge\frac{1}{10}\)
Hay: \(4a^2+25b^2\ge\frac{1}{10}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{1}{y}\Leftrightarrow3y=x\Leftrightarrow-15b=2a\Leftrightarrow6a=-45b\)
\(\Leftrightarrow b=-\frac{1}{50};a=\frac{3}{20}\)
\(T=\frac{1}{a^2+b^2+3}+\frac{1}{2ab}\)
\(T=\frac{1}{a^2+b^2+3}+\frac{1}{5ab}+\frac{3}{10ab}\)
Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\left(x,y>0\right)\)
\(2ab\le a^2+b^2\Leftrightarrow4ab\le\left(a^2+b^2+2ab\right)\Leftrightarrow2ab\le\frac{\left(a+b\right)^2}{2}\)
Áp dụng:
\(T\ge\frac{4}{a^2+b^2+3+5ab}+\frac{3}{5.\frac{\left(a+b\right)^2}{2}}\ge\frac{4}{\left(a+b\right)^2+3+1,5.\frac{\left(a+b\right)^2}{2}}+\frac{3}{5.\frac{2^2}{2}}=\frac{4}{2^2+3+1,5.\frac{2^2}{2}}+\frac{3}{5.2}=\frac{4}{10}+\frac{3}{10}=\frac{7}{10}\)Dấu " = " xảy ra \(\Leftrightarrow a=b=1\)( lát giải thích sau )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\\frac{1}{a^2+b^2+3}=\frac{1}{5ab}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\a^2+b^2+3=5ab\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\\left(a+b\right)^2-2ab+3=5ab\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\4+3=5ab+2ab\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\7=7ab\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\ab=1\end{cases}}\Leftrightarrow a=b=1\)
Bổ sung thêm:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y>0)
Dấu " = '" xảy ra <=> x=y
\(2ab\le a^2+b^2\)
Dấu " = '" xảy ra <=> a=b
Giả sử x>0
\(x^2+x+3-\left(x-1\right)^2=x^2+x+3-x^2+2x-1=3x+2>0\)
\(\left(x+2\right)^2-x^2-x-3=x^2+4x+4-x^2-x-3=3x+1>0\)
\(\Rightarrow\left(x-1\right)^2< x^2+x+3< \left(x+2\right)^2\)
\(\Rightarrow y^2=\orbr{\begin{cases}x^2\\\left(x+1\right)^2\end{cases}}\)
Với \(y^2=x^2\)
\(\Rightarrow x^2+x+3=x^2\Leftrightarrow x+3=0\Leftrightarrow x=-3\)(loại)
\(y^2=\left(x+1\right)^2\)
\(\Rightarrow x^2+x+3=x^2+2x+1\)
\(\Rightarrow2=x\)(t/m)
Thay x = 2 \(\Rightarrow y^2=4+2+3=9\Leftrightarrow y=\pm3\)
Vậy \(x=2;y=\pm3\left(tm\right)\)
\(2x^3-2x+x^2-1=4x^2-2x-2\)
\(2x^3-2x+x^2-1-4x^2+2x+2=0\)
\(2x^3-3x^2+1=0\)
\(2x^3-2x^2-x^2+1=0\)
\(2x^2.\left(x-1\right)-\left(x^2-1\right)=0\)
\(2x^2.\left(x-1\right)-\left(x-1\right).\left(x+1\right)=0\)
\(\left(x-1\right).\left(2x^2-x-1\right)=0\)
*) \(x-1=0\Rightarrow x=1\)
*)\(2x^2-x-1=0\Rightarrow2x^2-2x+x-1=0\Rightarrow2x.\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right).\left(2x+1\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)
Vậy ...
mik ví dụ 1 biểu thức nha
a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c
tương tự với mấy biểu thức còn lại
\(x^2-12+\frac{36}{x^2}-4x+\frac{24}{x}=5\)
\(\Leftrightarrow x^2+\frac{36}{x^2}-4x+\frac{24}{x}=5+12\)
\(\Leftrightarrow x^2+\frac{36}{x^2}-4x+\frac{24}{x}=17\)
\(\Leftrightarrow x^2.x^2+\frac{36}{x^2}.x^2-4x.x^2+\frac{24}{x}.x^2=17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=17x^2-17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow x\in\left\{-1;2;-3;4\right\}\)
A B C D M E F K H S I J
a) Bằng tính chất của hình bình hành và hệ quả ĐL Thales ta có:
\(\frac{KM}{KH}=\frac{BF}{BC}=\frac{MF}{DC}=\frac{MF}{EF}\). Suy ra KF // EH (Theo ĐL Thales đảo) (đpcm).
b) Gọi giao điểm của EK và HF là S. Ta đi chứng minh B,D,S thẳng hàng. Thật vậy:
Gọi MS cắt EH và KF lần lượt ở I và J.
Theo bổ đề hình thang (cho hình thang KEHF) thì I là trung điểm EH và J là trung điểm KF
Do các tứ giác BKMF và DEMH là hình bình hành nên BD đi qua trung điểm của EH và KF
Từ đó suy ra: 2 đường thẳng BD và MS trùng nhau hay 3 điểm B,D,S thẳng hàng => ĐPCM.
c) Dễ thấy: SKEF = SKHF (Chung đáy KF, cùng chiều cao vì KF//EH) => SKME = SFMH
Mà SMKAE = 2.SKME; SMHCF = 2.SFMH nên SMKAE = SMHCF (đpcm).
đậu fuck