Cho tam giác ABC vuông tại A AC=6 cm AB= 12cm Lấy điểm M trên AB sao cho AM = 1/3 AB biết diện tích tam giác ABN là 18cm2
@ tính MN b) tính diện tích hình thang AMNC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3³⁹ = (3¹³)³ = 1594323³
11²¹ = (11⁷)³ = 19487171³
Do 1594323 < 19487171
⇒ 1594323³ < 19487171³
Vậy 3³⁹ < 11²¹
Phần trăm trên tổng kế hoạch chỉ số cây lớp 5C là:
100% - 20% - 45% x (100% - 20%) = 44% (tổng số cây)
Tổng số cây 3 lớp phải trồng:
132:44% = 300 (cây)
Số cây lớp 5A phải trồng:
300 x 20% = 60 (cây)
Số cây lớp 5B phải trồng:
45% x (300 - 60) = 108 (cây)
Số cây lớp 5C phải trồng: 132 cây
Vậy, đáp số: Lớp 5A phải trồng 60 cây, lớp 5B phải trồng 108 cây, lớp 5C phải trồng 132 cây.
D = \(\dfrac{1}{1\times1981}\) + \(\dfrac{1}{2\times1982}\)+...+ \(\dfrac{1}{25\times2005}\)
D =\(\dfrac{1}{1980}\times\)( \(\dfrac{1980}{1\times1981}\)+ \(\dfrac{1980}{2\times1982}\)+....+ \(\dfrac{1980}{25\times2005}\))
D = \(\dfrac{1}{1980}\) \(\times\)(\(\dfrac{1}{1}\) - \(\dfrac{1}{1981}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{1982}\)+....+ \(\dfrac{1}{25}\) \(\times\) \(\dfrac{1}{2005}\))
D= \(\dfrac{1}{1980}\)[( \(\dfrac{1}{1}\) + \(\dfrac{1}{2}\) +....+ \(\dfrac{1}{25}\)) - ( \(\dfrac{1}{1981}\)+ \(\dfrac{1}{1982}\)+...+ \(\dfrac{1}{2005}\))]
E =\(\dfrac{1}{25}\times\)( \(\dfrac{1}{1\times26}\)+ \(\dfrac{1}{2\times27}\)+...+ \(\dfrac{1}{1980\times2005}\))
E = \(\dfrac{1}{25}\). (\(\dfrac{25}{1\times26}\) + \(\dfrac{25}{2\times27}\)+....+ \(\dfrac{25}{1980\times2005}\))
E = \(\dfrac{1}{25}\).(\(\dfrac{1}{1}\)-\(\dfrac{1}{26}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{27}\)+...+\(\dfrac{1}{1980}\)-\(\dfrac{1}{2005}\))
E=\(\dfrac{1}{25}\)[\(\dfrac{1}{1}\)+...+ \(\dfrac{1}{25}\)+ (\(\dfrac{1}{26}\)+...+\(\dfrac{1}{1980}\)) - (\(\dfrac{1}{26}\)+...+\(\dfrac{1}{1980}\)) - (\(\dfrac{1}{1981}\)+..\(\dfrac{1}{2005}\))]
E = \(\dfrac{1}{25}\) .[\(\dfrac{1}{1}\)+\(\dfrac{1}{2}\)+...+\(\dfrac{1}{25}\) - (\(\dfrac{1}{1981}\)+\(\dfrac{1}{1982}\)+...+ \(\dfrac{1}{2005}\))]
\(\dfrac{D}{E}\) = \(\dfrac{\dfrac{1}{1980}}{\dfrac{1}{25}}\) = \(\dfrac{5}{396}\)
\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)
a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)
\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)
b) Để \(A=-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)
\(\Leftrightarrow2x^2=-\left(x+1\right)\)
\(\Leftrightarrow2x^2+x+1=0\)
\(\Delta=1-8=-7< 0\)
Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)
c) Để \(A< 1\)
\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)
\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)
\(\Leftrightarrow x^2-x-1< 0\)
\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)
\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)
\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)
d) Để A nguyên
\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)
\(\Leftrightarrow x^2⋮x+1\)
\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)
\(\Leftrightarrow x^2-x^2+x⋮x+1\)
\(\Leftrightarrow x⋮x+1\)
\(\Leftrightarrow x-x-1⋮x+1\)
\(\Leftrightarrow-1⋮x+1\)
\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)
\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)
\(38=2.19\)
\(72=2^3.3^2\)
\(\Rightarrow UCLN\left(38;72\right)=2\)
\(\dfrac{12}{16}=\dfrac{132}{176}\\ \dfrac{13}{16}=\dfrac{143}{176}\\ Ta.có:\dfrac{16}{22}< \dfrac{132}{176}< \dfrac{17}{22}< \dfrac{143}{176}< \dfrac{18}{22}\\ Vậy:Chọn.số.17\)
A B C H E K
a/
Xét tg vuông ABE và tg vuông HBE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
=> tg ABE = tg HBE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
b/
tg ABE = tg HBE (cmt) => AB = HB => tg BAH cân tại B
\(\widehat{ABE}=\widehat{HBE}\)
=> BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Xét tg vuông KBH và tg vuông ABC có
\(\widehat{B}\) chung
AB = HB (cmt)
=> tg KBH = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=BC
Xét tg BKE và tg BCE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
BK=BC (cmt)
=> tg BKE = tg BCE (c.g.c) => EK = EC
d/
Xét tg vuông AKE có
AE<EK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất
Mà EK=EC (cmt)
=> AE<EC
Đề bài còn thiếu, chưa nói rõ điểm N (...là N nằm trên BC)
lồn chọc cu