Đặt x^2 - z =a ; y^- zx=b; z^2-xy=c CMR: ax+by+cz chia hết cho a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=5xy\left(3x-y+4x^2\right)\)
\(b,=\left(x-4\right)^2-16=\left(x-4+4\right)\left(x-4-4\right)\)
\(=x\left(x-8\right)\)
\(c,=\left(x-5\right)^2-9^2=\left(x-14\right)\left(x+4\right)\)
\(d,=\left(x-y\right)^2-\left(x+5\right)^2=\left(2x-y+5\right)\left(-y-5\right)\)
a) \(15x^2y-5xy^2+20x^3y=5xy\left(3x-y+4x^2\right)\)
b) \(x^2+16-8x-16=x^2-8x=x\left(x-8\right)\)
c) \(x^2+25-10x-81=\left(x-5\right)^2-9^2=\left(x-14\right)\left(x+4\right)\)
d) \(x^2-2xy+y^2-x^2-10x-25=\left(x-y\right)^2-\left(x+5\right)^2=-\left(2x-y+5\right)\left(y+5\right)\)
\(Với\) \(\left\{{}\begin{matrix}x=8\\y=9\end{matrix}\right.\) \(thay\) \(vào\), \(ta\) \(có\):
\(A=x\left(x-y\right)+y\left(x+y\right)\)
\(=8\left(8-9\right)+9\left(8+9\right)\)
\(=8.-1+9.17=-8+153=145\)
Bổ sung: \(a\ne b\)
\(a^2+3a=b^2+3b\)
\(\Rightarrow a^2-b^2+3a-3b=0\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(a+b+3\right)=0\)
- Vi \(a\ne b\) nên ta chọn \(a+b+3=0\) hay \(a+b=-3\)
- Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=-3.\left[\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\left(a^2+2ab+b^2\right)\right]\)
\(=-3.\left[\dfrac{3}{2}\left(2-3a+2-3b\right)-\dfrac{1}{2}\left(a+b\right)^2\right]\)
\(=-3.\left[\dfrac{3}{2}\left[4-3.\left(-3\right)\right]-\dfrac{1}{2}.9\right]\)
\(=-3.\left(\dfrac{3}{2}.13-\dfrac{9}{2}\right)=-3.15=-45\left(đpcm\right)\)
(a+b)2=a2+2ab+b2=4 (1)
a3+b3=14 (2)
a3+b3=(a+b)(a2-ab+b2)=14
=> 2(a2-ab+b2)=14 => a2-ab+b2=7 (3)
Trừ 2 vế của (1) cho (3) => 3ab=-3=>ab= -1
Nhân 2 vế của (1) với (2)
=> (a3+b3)(a2+2ab+b2)=14.4=56
=> a5+2a4b+a3b2+a2b3+2ab4+b5=56
=> (a5+b5)+2ab(a3+b3)+a2b2(a+b)=56
=> (a5+b5)+2.(-1).14+(-1)2.2=56
=> (a5+b5)-28+2=56 => a5+b5=82
\(\left(x^2+y^2-5\right)-\left(2xy-4\right)^2=\left(x^2+y^2-1-2xy\right)^2=\left[\left(x-y\right)^2-1\right]^2=\left(x-y-1\right)^2\left(x-y+1\right)^2\)
(x2+1)2-6(x2+1)2+5
= (x2+1)2(-6+1)+5
= -5(x2+1)2+5
= -5(x4+2x2+1-1)
= -5(x4+2x2)
= -5x4-10x2
Ta có:
\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-zx=b\\z^2-xy=c\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\)
⇒\(ax+by+cz=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(x+y\right)z-3xy\right]\)
⇒\(ax+by+cz⋮x+y+z\)
em ghi sai đề hay sao á