K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

25 phần mấy bạn

16 tháng 4 2019

25/2 nhé các bác

18 tháng 4 2019

Em cộng vế theo vế ta có: 

\(2x^4+\left(1-2x\right)^4+2y^4+\left(1-2y\right)^4=\frac{2}{27}\)

Áp dụng BĐT cauchy schwarz dạng engel

\(2x^4+\left(1-2x\right)^4=\frac{\left(x^2\right)^2}{1}+\frac{\left(x^2\right)^2}{1}+\frac{\left(\left(1-2x\right)^2\right)^2}{1}\ge\frac{\left(x^2+x^2+\left(1-2x\right)^2\right)^2}{1+1+1}\)

\(x^2+x^2+\left(1-2x\right)^2=\frac{x^2}{1}+\frac{x^2}{1}+\frac{\left(1-2x\right)^2}{1}\ge\frac{\left(x+x+1-2x\right)^2}{1+1+1}=\frac{1}{3}\)

=> \(2x^4+\left(1-2x\right)^4\ge\frac{1}{27}\)

Tương tự \(2y^4+\left(1-2y\right)^4\ge\frac{1}{27}\)

Do đó \(2x^4+\left(1-2x\right)^4+2y^4+\left(1-2y\right)^4\ge\frac{2}{27}\)

Dấu "=" xảy ra <=> x=1-2x và y=1-2y <=> x=y=1/3

12 tháng 4 2019

o D C A B E F x M I K

a) Ta có CD vuông AB => \(\widehat{CDA}=90^o\)

CE vuông AM => \(\widehat{CEA}=90^o\)

Xét tứ giác ADCE có :\(\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)

=> Tứ giác ADCE nội tiếp

b) Tương tự ta chứng minh được tứ giác CDBF nội tiếp

Tứ giác ADCE nội tiếp => \(\widehat{CDE}=\widehat{CAE}\)( cùng chắn cung CE)

 Tứ giác CDBF nội tiếp => \(\widehat{CFD}=\widehat{CBD}\)( cùng chắn cung DC)

Mà \(\widehat{CBD}=\widehat{CAE}\)( cùng chắn cung AC của đường tròn (O))

=> \(\widehat{CDE}=\widehat{CFD}\)

Tương tự như trên ta chứng minh được : \(\widehat{DEC}=\widehat{DAC}=\widehat{CBF}=\widehat{FDC}\)

Xét tam giác CDE  và tam giác CFD có: 

\(\widehat{CDE}=\widehat{CFD}\)

\(\widehat{DEC}=\widehat{FDC}\)

=> \(\Delta CDE=\Delta CFD\)

3) Gọi Cx là tia đối của ta CD

Nối OM. Dễ dàng chứng minh được: OM vuông AB, \(\widehat{AOM}=\widehat{BOM}\)(1)

Ta có: Cx//OM ( cùng vuông góc với AB), CE//OA ( cùng vuông với AM)

=> \(\widehat{AOM}=\widehat{ECx}\)(2)

Cx// OM, CF//OB ( cùng vuông với BM)

=> \(\widehat{BOM}=\widehat{FCx}\)(3)

Từ (1), (2), (3), 

=> \(\widehat{ECx}=\widehat{FCx}\)

=> Cx là phân giác góc ECF

4. Ở câu 2 Ta đã chứng minh : \(\widehat{CDE}=\widehat{CBD}\Rightarrow90^o=\widehat{DCB}+\widehat{CBD}=\widehat{CDE}+\widehat{DCB}=\widehat{CDI}+\widehat{DCK}\)

Tương tự như trên chứng minh được: \(\widehat{CDK}+\widehat{ICD}=90^o\)

Xét tứ giác IDKC có: \(\widehat{IDK}+\widehat{ICK}=\widehat{IDC}+\widehat{CDK}+\widehat{ICD}+\widehat{DCK}=\left(\widehat{IDC}+\widehat{DCK}\right)+\left(\widehat{CDK}+\widehat{ICD}\right)\)

\(=90^o+90^o=180^o\)

=> Tứ giác IDKC nội tiếp

=> \(\widehat{IKC}=\widehat{IDC}=\widehat{DBC}\)

=> IK//AB ( 2 góc so le trong)

          

9 tháng 4 2019

Hiện tại tiếp diễn là S + to be (is,am ,are) VIng nhé chứ không phải động từ đâu :)))

Hiện tại hòan thành

S + have/has +V3/ed

Dấu hiệu:since;for ;never ; ever ; so far ;yet ,...

vd : I have learnt E for 4 years

Quá khứ hòan thành

S + had +V3/ed

Dấu hiệu: by the time,after , before

vd By the time I arrived , you had had dinner

1 số thì cho HSG và cấp 3 bạn có cần ko?

>>>Ai không hiểu chỗ nào trong đáp án của mình thì hỏi mình nhé!