Cho \(a+b\le-2\) và \(a^2+b^2+ab+3b=0\).
Tìm GTNN của \(P=2a^2+2b^2-ab-6a+9b+2020\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{MKH}=\widehat{MCH}\)
c) Tam giác COA=tam giác BOA ( tự chứng minh)
=> \(\widehat{COA}=\widehat{BOA}\)(1)
Ta có: MK//OC ( cùng vuông AC)
MH//OA ( cùng vuông BC)
=> \(\widehat{KMH}=\widehat{AOC}\)(2)
Tương tự chứng minh đc: \(\widehat{HMI}=\widehat{AOB}\)(3)
Từ 1, 2, 3 => \(\widehat{KMH}=\widehat{HMI}\)(4)
Tứ giác KMHC nội tiếp ( tự chứng minh)
=> \(\widehat{MKH}=\widehat{MCH}\)( cùng chắn cung MH) (5)
Tứ giác MIBH nội tiếp ( tự chứng minh)
=> \(\widehat{MHI}=\widehat{MBI}\) (cùng chắn cung MI)(6)
Mà \(\widehat{MCH}=\widehat{MBI}\)( cùng chắn cung MB của đường tròn (O)) (7)
Từ (5), (6), (7)
=> \(\widehat{MKH}=\widehat{MHI}\)(8)
Xét tam giác KMH và tam giác HMI có:
\(\widehat{KMH}=\widehat{HMI}\)(theo (4))
\(\widehat{MKH}=\widehat{MHI}\)( theo (8)
=> tam giác KMH đông dạng tam giác HMI
Ta chứng minh các bất đẳng thức:
\(x+y\ge2\sqrt{xy}\Leftrightarrow2\sqrt{xy}\le1\Leftrightarrow\sqrt{xy}\le\frac{1}{2}\)
\(x+y\ge2\sqrt{xy}\Leftrightarrow2x+2y\ge x+y+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\le2\left(x+y\right)=2\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2}\)
\(\left[\left(\frac{x}{\sqrt{x\sqrt{y}}}\right)^2+\left(\frac{y}{\sqrt{y\sqrt{x}}}\right)^2\right]\left(\sqrt{x\sqrt{y}}^2+\sqrt{y\sqrt{x}}^2\right)\ge\left(x+y\right)^2\) (Bunyakovski)
\(\Leftrightarrow\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\ge\frac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}\)
Ta có:
\(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\)
\(\ge\frac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\frac{1}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\ge\frac{1}{\frac{1}{2}\cdot\sqrt{2}}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{x\sqrt{y}}=\frac{y}{y\sqrt{x}}\\x=y\end{cases}\Leftrightarrow x=y}\)
x+y=1 <=> x=y=1/2
Vậy GTNN của biểu thức trên là \(\sqrt{2}\)<=> x=y=1/2
Hơi dài tí, tại chỉ suy nghĩ như thế thôi
2)
a) ĐK: \(2x^2-8x-12\ge0\)(1)
Nhân 2 cả hai vế ta có:
\(2x^2-8x-12=2\sqrt{2x^2-8x-12}\)
Đặt: \(\sqrt{2x^2-8x-12}=t\left(t\ge0\right)\)
Ta có phương trình: \(t^2=2t\Leftrightarrow\orbr{\begin{cases}t=0\\t=2\end{cases}}\)(tm)
+) Với t=0 ta có:\(\sqrt{2x^2-8x-12}=0\Leftrightarrow2x^2-8x-12=0\Leftrightarrow x^2-4x-6=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}\)( thỏa mãn đk (1))
+) Với t=2 ta có: \(\sqrt{2x^2-8x-12}=2\Leftrightarrow2x^2-8x-12=4\Leftrightarrow x^2-4x-8=\Leftrightarrow\orbr{\begin{cases}x=2+2\sqrt{3}\\x=2-2\sqrt{3}\end{cases}}\)( THỎA MÃN đk (1))
vậy ...
b) pt <=> \(\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)=4\)
<=> \(\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)=4\)
Đặt :\(12x^2+11x+2=t\)
Ta có pt: \(t\left(t-3\right)=4\Leftrightarrow t^2-3t-4=0\Leftrightarrow\orbr{\begin{cases}t=4\\t=-1\end{cases}}\)
Với t=4 ta có: ....
Với t=-1 ta có:...
Em tự làm tiếp nhé
A N O M H C B
Ta có OA là đường trung trực của BC ( tự chứng minh)
Xét tam giác BNC có: Đường trung trực của CN cắt đường trung trực của BC tại M
Gọi H là trung điểm của NB
=> MH là đường trung trực của NB
=> MH vuông OB
mà AB vuông OB
=> MH//AB
Theo định lí thalet'
\(\frac{AM}{AO}=\frac{HB}{AB}=\frac{1}{3}\)(vì HB=HN=1/2 BN=ON=> HB=1/3AB)
Gọi chiều rộng của mảnh đất là x (m^2, >0)
Chiều dài của mảnh đất gấp 4 lần chiều rộng nên chiều dài mảnh đất là: 4x (m^2)
Diện tích mảnh đất là: 4x.x=4x^2 (m^2)
Giảm chiều rộng đi 2m được chiều rộng mới là: x-2 (m)
Tăng chiều dài lên gấp đôi đc chiều dai mới là: 2.4x=8x(m)
Diện tích của mảnh đất mới là; 8x(x-2) (m^2)
Theo bài ra ta có phương trình:
8x(x-2)-4x^2=20
<=> 8x^2-16x-4x^2=20
<=> 4x^2-16x-20=0
<=> x=5 (tm), x=-1 (loại)
Vậy chiều rộng là 5m. Chiều dài la 4.5=20 m
O A B C M N T I
a) Em tự làm nhé
b) Xét tam giác ANC và tam giác ABN
có: \(\widehat{NAC}=\widehat{BAN}\)
\(\widehat{NCA}=\widehat{BNA}\)( cùng chắn cung AN của (O))
=> Tam giác ANC = tam giác ABN
=> \(\frac{AN}{AC}=\frac{AB}{AN}\Rightarrow AN^2=AB.AC\)
Từ công thức em tính AC rồi suy ra BC
c) Vì I là trung điểm BC
=> OI vuông BC
Dễ dàng cm đc tứ giác ONAI nội tiếp
=> \(\widehat{NIA}=\widehat{NOA}=\frac{1}{2}\widehat{NOM}\)
và \(\widehat{NTM}=\frac{1}{2}\widehat{NOM}\)( cùng chắn cung NM , góc nội tiếp bằng 1/2 góc ở tâm)
=> \(_{\widehat{NIA}=\widehat{NTM}}\)
Hai góc này ở vị trí đồng vị
=> IA//TM hay MT//AC
\(P=a^2+a^2+b^2+b^2+ab-2ab-6a+3b+6b+2020\)
\(=\left(a^2+b^2+ab+3b\right)+\left(a^2+b^2-2ab-6a+6b+9\right)-9+2020\)
\(=0+\left(a-b-3\right)^2+2011\ge2011\)
Dấu "=" xảy ra <=> a-b-3=0 <=> a=b+3 thế vào \(a^2+b^2+ab+3b=0\). Ta có:
\(\left(b+3\right)^2+b^2+b\left(b+3\right)+3b=0\)
<=> \(3b^2+12b+9=0\Leftrightarrow\orbr{\begin{cases}b=-1\\b=-3\end{cases}}\)
+) Với b=-1
ta có: a=-1+3=2
Nên a+b=1 >-2 loại
+) Với b=-3
Ta có: a=-3+3=0
Nên a+b=0+-3<-2 tm
Vậy min P=2011 khi và chỉ khi a=0; b=-3
Em cảm ơn c Nguyễn Linh Chi ạ!