Chứng minh : \(\frac{1}{a}-\frac{1}{b}>\frac{4}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{x}{2}\div\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{2}\times\frac{2}{1}=\frac{1}{y}\)
\(\Leftrightarrow x=\frac{1}{y}\)
x/2.2=1/y
2x/2=1/y
x=1/y
suy ra xy=1
vi x thuoc Z va y khac 0
suy ra x=-1;y=-1
hoac x=y=1
KL


\(A=\frac{15}{11}+\frac{5}{12}+\frac{11}{13}+\frac{9}{14}\)
\(\Rightarrow A=\left(1+\frac{4}{11}\right)+\left(1-\frac{7}{12}\right)+\left(1-\frac{2}{13}\right)+\left(1-\frac{5}{14}\right)\)
\(\Rightarrow A=\left(1+1+1+1\right)-\left(\frac{7}{12}-\frac{4}{11}+\frac{2}{13}+\frac{5}{14}\right)\)
\(\Rightarrow A=4-\left(\frac{7}{12}-\frac{4}{11}+\frac{2}{13}+\frac{5}{14}\right)< 4\)


số liền trước của số lớn nhất có hai chữ số là : 98
số liền sau của số bé nhất có một chữ số là : 1
hiệu 2 số là :
98 - 1 = 97
ĐS : 97
Giả sử a=1;b=1 \(\Rightarrow\frac{1}{a}-\frac{1}{b}=\frac{1}{1}-\frac{1}{1}>2\)
\(\Rightarrow\) Đề sai.nếu đề là \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) thì:
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(*luôn đúng*)
Biết ngay là đề sai mà .