K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

hoc ma choi la sao

28 tháng 1 2018

Cho ba số tự nhiên A; B và C có tổng là 5850, trong đó số A bé hơn số B là 15 đơn vị, số B bé hơn số C là 30 đơn vị. Tìm số C. 
Trả lời: Số C là 

25 tháng 1 2018

Có : A = a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc-abc

= a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+abc

= (a^2b+ab^2+abc)+(b^2c+bc^2+abc)+(c^2a+ca^2+abc)-2abc

= (a+b+c).(ab+bc+ca)-2abc

Vì a+b+c chia hết cho 4 => (a+b+c).(ab+bc+Ca) chia hết cho 4 và a+b+c chẵn

a+b+c chẵn => trong 3 số a,b,c có 1 nhất 1 số chẵn vì nếu cả 3 số đều lẻ thì a+b+c lẻ

=> abc chia hết chi 2 => 2abc chia hết cho 4

=> A chia hết cho 4

=> ĐPCM

Tk mk nha

28 tháng 2 2018

thanks bạn nha :v

25 tháng 1 2018

sv 5 thui

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

25 tháng 1 2018

là thế nào

tớ không hiểu

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)