Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
a) A = \(\frac{6}{-2x^2-3}\)
b) B = \(\frac{1}{-x^2-2x-6}\)
c) C = \(\frac{7}{10x-x^2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) ĐKXĐ : \(x\ne4\)
Để biểu thức \(\frac{3x^3-4x^2+x-1}{x-4}\) nguyên với \(x\) nguyên thì :
\(3x^3-4x^2+x-1⋮x-4\)
\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)
\(\Leftrightarrow3x^2.\left(x-4\right)+8x.\left(x-4\right)+31.\left(x-4\right)+131⋮x-4\)
\(\Leftrightarrow131⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(131\right)\)
\(\Leftrightarrow x-4\in\left\{-1,1,131,-131\right\}\)
\(\Leftrightarrow x\in\left\{3,5,135,-127\right\}\)
d) ĐKXĐ : \(x\ne-\frac{3}{2}\)
Để biểu thức \(\frac{3x^2-x+1}{3x+2}\) nhận giá trị nguyên với \(x\) nguyên thì :
\(3x^2-x+1⋮3x+2\)
\(\Leftrightarrow3x^2+2x-3x-2+3⋮3x+2\)
\(\Leftrightarrow x.\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)
\(\Leftrightarrow3⋮3x+2\)
\(\Leftrightarrow3x+2\inƯ\left(3\right)\)
\(\Leftrightarrow3x+2\in\left\{-1,1,-3,3\right\}\)
\(\Leftrightarrow x\in\left\{-1,-\frac{1}{3},-\frac{5}{3},\frac{1}{3}\right\}\) mà \(x\) nguyên
\(\Rightarrow x=-1\)
Bài làm:
Ta có: \(2009-\left|x-2009\right|=x\)
\(\Leftrightarrow\left|x-2009\right|=2009-x\)
\(\Leftrightarrow\orbr{\begin{cases}x-2009=2009-x\\x-2009=x-2009\end{cases}}\Rightarrow\orbr{\begin{cases}2x=2009.2\\0x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2009\\0x=0\end{cases}}\)
Vậy PT thỏa mãn với mọi x
Bài này ta áp dụng kiến thức sau : \(\left|A\right|=\hept{\begin{cases}A\Leftrightarrow A\ge0\\-A\Leftrightarrow A< 0\end{cases}}\).
Ta có : \(2009-\left|x-2009\right|=x\)
\(\Leftrightarrow\left|x-2009\right|=2009-x\)
\(\Leftrightarrow x-2009\le0\)
\(\Leftrightarrow x\le2009\)
Vậy \(x\le2009\)
nghĩa tiếng việt là:cái gì nặng như điện thoại di động
mk cũng ko biết đúng hay sai nhưng theo từ vựng mk biết thì đoán là vậy
1. Because of their business, he couldn't meet them.
2. Despite having a bad cold, Minh came to class.
3. Despite being a bad master, money is a good servant.
4. Although he tried hard, he could not change her mind.
5. Despite the rough weather, the old man always enjoy swimming.
6. Despite the fact that the party was far from here, we came there.
7. Despite the bad weather, the plane took off.
8. He comes home late, however, she waits for him for dinner.
9. I the color of the hat but I do not it shape.
a) \(\left(2x-2\sqrt{2x}+1\right)+\left(y-10\sqrt{y}+25\right)=0\)
\(\left(\sqrt{2x}-1\right)^2+\left(\sqrt{y}-5\right)^2=0\)
b) \(\left(x-4\sqrt{x}+4\right)+\left(y-14\sqrt{y}+49\right)=0\)
\(\left(\sqrt{x}-2\right)^2+\left(\sqrt{y}-7\right)^2=0\)
Đặt ĐKXĐ và giải nốt phần sau là xong.
Mình chỉ giải đến đây thôi, còn phần sau bạn tự làm nhé.
a, ĐKXĐ : \(x;y\ge0\)
\(2x+y+26=\sqrt{8x}+\sqrt{100y}\)
\(\Leftrightarrow2x+y+26=\sqrt{4.2.x}+\sqrt{10^2y}\)
\(\Leftrightarrow2x+y+1+25-2\sqrt{2}x-10\sqrt{y}=0\)
\(\Leftrightarrow\left(2x-2\sqrt{2}x+1\right)+\left(y-10\sqrt{y}+25\right)=0\)
\(\Leftrightarrow\left(\sqrt{2}x+1\right)^2+\left(\sqrt{y}+5\right)^2=0\)
Tự lm nốt nhá bạn
a) ĐKXĐ : \(x\ne3\)
Để \(\frac{2}{x-3}\)nguyên
=> \(2⋮x-3\)
=> \(x-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-3 | 1 | -1 | 2 | -2 |
x | 4 | 2 | 5 | 1 |
Cả 4 giá trị đều tmđk
KL : Vậy x = { 4 ; 2 ; 5 ; 1 }
b) ĐKXĐ : \(x\ne-2\)
Để \(\frac{3}{x+2}\)nguyên
=> \(3⋮x+2\)
=> \(x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
Cả 4 giá trị đều tmđk
KL : Vậy x = { -1 ; -3 ; 1 ; -5 }
a, ĐKXĐ : \(x\ne3\)
\(\frac{2}{x-3}\)có giá trị nguyên
\(\Leftrightarrow x-3\inƯ\left(2\right)\)
\(Ư\left(2\right)=\left\{\pm1;\pm2\right\}\)
+, TH1 : \(x-3=1\Leftrightarrow x=4\left(TM\right)\)
+, TH2 : \(x-3=-1\Leftrightarrow x=2\left(TM\right)\)
+, TH3 : \(x-3=2\Leftrightarrow x=5\left(TM\right)\)
+, TH4 : \(x-3=-2\Leftrightarrow x=1\left(TM\right)\)
Vậy với \(x\in\left\{4;2;5;1\right\}\)thì \(\frac{2}{x-3}\)có giá trị nguyên
a)\(A=\frac{6}{-2^2-3}\)
Ta có: \(x^2\ge0\Rightarrow2x^2+3\ge3\forall x\Rightarrow-2x^2-3\le-3\)
\(\Rightarrow A\ge-2\Rightarrow MinA=-2\)khi x=0
b) Ta có: \(x^2+2x+6=\left(x+1\right)^2+5\ge5\Rightarrow-x-2x-6\le-5\)
\(\Rightarrow B\ge\frac{-1}{5}\Rightarrow MinB=\frac{-1}{5}\)khi x=-1
c) Ta có:\(10x-x^2+3=-\left(x^2-10x+25\right)+28\le28\)\(\Rightarrow C\ge\frac{7}{28}=\frac{1}{4}\)