Tìm x nguyên để \(\frac{4x+9}{6x+5}\)nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là a theo đề bài ta có :
\(\frac{5a}{12}=\frac{10a}{24}\inℕ^∗\)\(\Rightarrow\)\(10a⋮24\)
\(\frac{10a}{21}\inℕ^∗\)\(\Rightarrow\)\(10a⋮21\)
Từ (1) và (2) suy ra :
\(10a⋮21;10a⋮24\)
\(\Rightarrow\)\(10a\in BC\left(21;24\right)=\left\{0;168;336;504;672;840;...\right\}\)
\(\Rightarrow\)\(a\in\left\{0;\frac{168}{10};\frac{336}{10};\frac{504}{10};\frac{672}{10};84;...\right\}\)
Mà a là số tự nhiên khác 0, a nhỏ nhất nên : \(a=84\)
Vậy số cần tìm là \(84\)
![](https://rs.olm.vn/images/avt/0.png?1311)
20+21+22+23+24+25+26+27 = (20+21)+(22+23)+(24+25) +(26+27) = 20. ( 1+2) + 22.(1+2)+ 24.(1+2)+ 26. (1+2) (1+2).(20+22+24+26)= 3.85 chia het cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)
Ta có:
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(\Rightarrow\frac{1}{2}A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{98.99.100}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{98.99}-\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1.2}-\frac{1}{99.100}\)
\(\Rightarrow A=\frac{4949}{9900}.\frac{1}{2}=\frac{4949}{19800}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì p là snt >3 nên p là số lẻ => (p-1).(p+1) là 2 số chằn liên tiếp
=> (p-1).(p+1) chia hết cho 8 (1)
Vì p là snt >3 nên p có dạng: p=3k+1 hoặc p=3k+2
. Nếu p=3k+1 thì (p-1).(p+1) = (3k+1-1)(3k+1+1)=3k(3k+2) chia hết cho 3 (2)
. Nếu p=3k+2 thì (p-1)(p+1) = (3k+2-1)(3k+2+1)=(3k+1)(3k+3)
=(3k+1)(k+1)3 chia hết cho 3 (3)
Từ (1) và (2);(1) và (3) => (p-1)(p+1) chia hết cho 8 và 3 => (p-1)(p+1) chia hết cho BCNN(3;8)
Mà ƯCLN(3;8)=1 => BCLN(3;8) = 3.8 = 24
=> (p-1)(p+1) chia hết cho 24 (ĐPCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=4+(22+23+24+...+220)
A-4=22+23+24+...+220
2(A-4)=23+24+25+...+221
A-4=2(A-4)-(A-4)=(23+24+25+...+221)-(22+23+24+...+220)
A-4=(23-23)+(24-24)+(25-25)+...+(220-220)+(221-22)
A-4=221-4
A =221-4+4
A =221
Để 4x+9/6x+5 nguyên thì 4x+9 chia hết cho 6x+5
=>3(4x+9) chia hết cho 6x+5
=>12x+27 chia hết cho 6x+5
=>(12x+10)+17 chia hết cho 6x+5
=>2(6x+5)+17 chia hết cho 6x+5
Vì 2(6x+5) chia hết cho 6x+5 nên 17 chia hết cho 6x+5
=>6x+5 thuộc Ư(17)={-17;-1;1;17{
Vậy x thuộc {-1;2}