Mặt sau của mọi lá bài đều giống y hệt nhau. Úp một lá bài bất kì lên bàn, làm thế nào để biết được mặt trước của nó một cách nhanh nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI GIẢI
ĐỘ DÀI ĐÁY TAM GIÁC BMC LÀ:
16-7=8CM
CHIỀU CAO CỦA TAM GIÁC BMC CỦNG LÀ CHIỀU CAO CỦA HÌNH THANG ABCD LÀ:
37,8x2:8=9,45CM
DIỆN TÍCH HÌNH THANG ABCD LÀ:
(16+9)x9,45:2=118,125CM2
Đ/S:118,125CM2
NHỚ TÍCH CHO MIK NHÉ
![](https://rs.olm.vn/images/avt/0.png?1311)
Những câu ca dao giản dị:
-Tích tiểu thành đại
-Tốt gỗ hơn tốt nước sơn.
-Ăn lấy chắc, mặc lấy bền.
- Ăn cần ở kiệm.
-Năng nhặt chặt bị
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{13}{3}:\frac{x}{4}=6:0,3\)
\(\frac{13}{3}:\frac{x}{4}=20\)
\(\frac{x}{4}=\frac{13}{3}:20\)
\(\frac{x}{4}=\frac{13}{60}\)
x.60:=4.13
x.60=52
x=52:60
\(x=\frac{13}{15}\)
vậy \(x=\frac{13}{15}\)
\(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
\(\Rightarrow\frac{13}{3}.\frac{4}{x}=20\)
\(\Rightarrow\frac{4}{x}=\frac{60}{13}\)
\(\Leftrightarrow60x=13.4=52\)
\(\Leftrightarrow x=\frac{13}{15}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\frac{6}{4+\sqrt{4-2\sqrt{3}}}=\frac{6}{4+\sqrt{\sqrt{3}^2-2\sqrt{3}+\sqrt{1}^2}}\)
\(=\frac{6}{4+\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}}=\frac{6}{4+|\sqrt{3}-1|}=\frac{6}{3+\sqrt{3}}\)
\(=\frac{6}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{36}}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{3}.\sqrt{12}}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{12}}{\sqrt{3}+1}\)
\(d,\frac{1}{\sqrt{7-2\sqrt{10}}}+\frac{1}{\sqrt{7+2\sqrt{10}}}\)
\(=\frac{1}{\sqrt{\sqrt{5}^2-2.\sqrt{2}.\sqrt{5}+\sqrt{2}^2}}+\frac{1}{\sqrt{\sqrt{5}^2+2.\sqrt{2}.\sqrt{5}+\sqrt{2}^2}}\)
\(=\frac{1}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)}}+\frac{1}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{1}{\sqrt{5}-\sqrt{2}}+\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}}{\sqrt{5}^2-\sqrt{2}^2}=\frac{\sqrt{5.4}}{5-2}=\frac{\sqrt{20}}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A = 22 + 23 + 24 + .... + 22019
=> 2A = 23 + 24 + 25 + .... + 22020
=> 2A - A = (23 + 24 + 25 + .... + 22020) - (22 + 23 + 24 + .... + 22019)
A = 22020 - 22
Lại có A = (24)505 - 4 = (...6)505 - 4 = (...6) - 4 = ...2
Khi đó S = 32019 - (....2)
= 32016.33 - (...2)
= (34)504.27 - (....2)
= (...1)504.27 - (...2)
= (...7) - (....2)
= ....5
Vậy chữ số tận cùng của S là 5
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2^{2n}=4^n\) \(\equiv4\)( mod 12)
+) Giải thích: Vì n = 1 => \(4\equiv4\left(mod12\right)\)
Còn n > 1 ta có: \(4^{n-1}\equiv1\left(mod3\right)\Rightarrow4^n\equiv4\left(mod12\right)\)( nhân cả với 4)
Đặt: \(4^n=12k+4\)
=> \(2^{2^{2n}}=2^{12k+4}=2^{12k}.2^4\equiv1^k.16\equiv3\left(mod13\right)\)
=> \(2^{2^n}+10\equiv3+10\equiv13\equiv0\left(mod13\right)\)
=> \(2^{2^{2n}}+10⋮13\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có 7 x abcdef = 6 x defabc (đk : a; d khác 0 ; \(0\le b;c;e;f\le9;0< a;d< 10\)
= 7 x (abc000 + def) = 6 x (def000 + abc)
= 7 x (abc x 1000 + def) = 6 x (def x 1000 + abc)
=> 7000 x abc + 7 x def = 6000 x def + 6 x abc
=> 7000 x abc - 6 x abc = 6000 x def - 7 x def
=> 6994 x abc = 5993 x def
=> 538 x abc = 461 x def
=> abc = \(\frac{461}{538}\)x def
Vì abc là số tự nhiên
=> \(\frac{461}{538}\)x def là số tự nhiên
=> def phải chia hết cho 538
lai có 99 < def < 1000
Kết hợp điều kiện => def = 538
Khi đó abc = 461
Vậy số cần tìm là 461538
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(-2\right)^3\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)\)
\(=-8.\frac{1}{2}:\left(\frac{9}{4}-\frac{7}{6}\right)\)
\(=-4.\frac{12}{13}\)
\(=-\frac{48}{13}\)
\(=\left(-8\right).\left(\frac{3}{4}-\frac{1}{4}\right):\left(\frac{9}{4}-\frac{7}{6}\right)\)
\(=\left(-8\right).\frac{1}{2}:\frac{13}{12}\)
\(=\left(-4\right):\frac{13}{12}\)
\(=-\frac{48}{13}\)
úp trên bàn kính à