2|x-3|+|2x+5|=11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
5^4*20^4/25^5*45=5^4 *5^4*4^4/25^4*25*45=4^4/25*45=256/1125
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x10 : x7 = 1/27
<=> x10-7 = 1/27
<=> x3 = 1/27
<=> x3 = ( 1/3 )3
<=> x = 1/3
b) 1/8x - 1 = 0, 25
<=> 1/8x = 5/4
<=> x = 10
c) \(\left|2\frac{1}{2}-x\right|=4\)
\(\Rightarrow\left|\frac{5}{2}-x\right|=4\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{2}-x=4\\\frac{5}{2}-x=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=\frac{13}{2}\end{cases}}\)
d) \(\hept{\begin{cases}\frac{x}{6}=\frac{y}{7}\\x+y=-39\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{7}=\frac{x+y}{6+7}=\frac{-39}{13}=-3\)
\(\Rightarrow\hept{\begin{cases}x=-18\\y=-21\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E F x y M I K
a) Gọi I là trung điểm của AB,
K là trung điểm của AC.
Ta có:
\(IA=IE=MK=\frac{1}{2}AB\)
\(KF=KA=IM=\frac{1}{2}AC\)
TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K
\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)
\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)
MI//AC
=> BIM=BAC ( đồng vị) (1)
M//AB
=> MKC=BAC (đồng vị)(2)
từ (1) và (2)
\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)
TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF
=> \(\Delta EIM\)= \(\Delta MKF\)
=> ME = MF
=> TAM GIÁC MEF cân tại M
![](https://rs.olm.vn/images/avt/0.png?1311)
Đổi : 1 năm = 12 tháng
Đặt tuổi con hiện nay là \(x\) (đơn vị : tháng)\(\Rightarrow\)Tuổi cha là \(12x\) (tháng).
Tuổi con 7 năm nữa là:
\(x+12\cdot7=x+84\) (tháng)
Tuổi cha 7 năm nữa là:
\(12x+12\cdot7=12x+84\) (tháng)
Vì 7 năm nữa tuổi con bằng 20% tuổi cha nên:
\(x+84=20\%\left(12x+84\right)\)
\(\Rightarrow x+84=2.4x+16.8\)
\(\Rightarrow2.4x-x=84-16.8\) (chuyển vế đổi dấu)
\(\Rightarrow1.4x=67.2\)
\(\Rightarrow x=67.2\div1.4\)
\(\Rightarrow x=48\) (tháng) \(=48\div12\) (tuổi) \(=4\) (tuổi)
Vì con bao nhiêu tháng thì cha bấy nhiêu tuổi nên cha 48 tuổi.
Đáp số : Tuổi con : \(4\) tuổi
Tuổi cha : \(48\) tuổi
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow a^2b^2-2abcd+c^2d^2=\left(ab-cd\right)^2\ge0\)(luôn đúng)
Tương tự cho \(\sqrt{\left(a+c\right)^2+\left(b+d\right)}^2,\sqrt{m^2+n^2}\), chứng minh được:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{m^2+n^2}\ge\sqrt{\left(a+c+n\right)^2}+\sqrt{\left(b+d+n\right)^2}\)(BDT Minkowski)
Tìm x nha
Ta có:\(2\left|x-3\right|+\left|2x+5\right|=\left|6-2x\right|+\left|2x+5\right|\ge\left|\left(6-2x\right)+\left(2x+5\right)\right|=11,\forall x\)
\(Do\text{đ}\text{ó}2\left|x-3\right|+\left|2x+5\right|=11\Rightarrow\left(6-2x\right)\left(2x+5\right)\ge0\Rightarrow\frac{-5}{2}\le x\le3\)