Tim x:
a)\(xx+x+5=125\) b)\(xxx-xx-x-25=4430\)
\(xxx+xx+x+x=992\) \(xxx+xx+x+x+x+1=1001\)
\(4725+xxx+xx+x=54909\)\(35655-xxx-xx-x=5274\)
Cac bn giup mik nha ! :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có BH//CF mà CF _|_ AB nên BH _|_ AB
Xét \(\Delta ABH\)vuông tại B có BE là đường cao nên \(AB^2=AH\cdot AE\Rightarrow AC^2=AH\cdot AE\)(vì AE=AC)
b) Vẽ DK _|_ AB khi đó DK là đường trung bình của \(\Delta FBC\)
\(\Rightarrow DK=\frac{1}{2}CF\)
tam giác ABD vuông tại A, DK là đường cao nên \(\frac{1}{DK^2}=\frac{1}{DB^2}+\frac{1}{DA^2}\)
Do đó\(\frac{1}{\left(\frac{CF}{2}\right)^2}=\frac{1}{\left(\frac{BC}{2}\right)^2}+\frac{1}{DA^2}\Rightarrow\frac{4}{CF^2}=\frac{4}{BC^2}+\frac{1}{AD^2}\)
\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)
Điều kiện để biểu thức có nghĩa:
\(\hept{\begin{cases}\frac{7x-1}{2x^2+3}\ge0\\3x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}7x-1\ge0\\3x-2\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}7x\ge1\\3x\ge2\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{1}{7}\\x\ge\frac{2}{3}\end{cases}}\Rightarrow x\ge\frac{2}{3}\)
Vậy \(x\ge\frac{2}{3}\) thì BT A có nghĩa
Mình làm tắt thôi nhé
\(A=\frac{x^4-2x^2+1}{x^4+x^3+x+1}=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x^2-x+1\right)}=\frac{\left(x-1\right)^2}{x^2-x+1}\left(x\ne-1\right)\)
Dễ thấy \(A\ge0\)
\(A=\frac{x^4-2x^2+1}{x^4+x^3+x+1}=\frac{x^4-2x^3+x^2+2x^3-4x^2+2x+x^2-2x+1}{x^4-x^3+x^2+2x^2-2x^2+2x+x^2-x+1}\)
\(=\frac{x^2\left(x^2-2x+1\right)+2x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)}{x^2\left(x^2-x+1\right)+2x\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)
\(=\frac{\left(x^2+2x+1\right)\left(x^2-2x+1\right)}{\left(x^2+2x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^2-2x+1}{x^2-x+1}\)
\(=\frac{\left(x-1\right)^2}{x^2-x+1}\)
Ta có : \(\frac{\left(x-1\right)^2}{x^2-x+1}=\frac{\left(x-1\right)^2}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\)
=> Đpcm
\(A=\left(\frac{1}{3}-1\right)\left(\frac{1}{6}-1\right)\left(\frac{1}{10}-1\right)....\left(\frac{1}{36}-1\right)\)
\(=\frac{-2}{3}.\frac{-5}{6}.\frac{-9}{10}...\frac{-35}{36}\)
\(=-\left(\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{70}{72}\right)=-\left(\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{7.10}{8.9}\right)\)
\(=-\left(\frac{1.4.2.5.3.6...7.10}{2.3.3.4.4.5...8.9}\right)=-\frac{\left(1.2.3.4..7\right)\left(4.5.6...10\right)}{\left(2.3.4...8\right)\left(3.4.5...9\right)}=-\frac{1.10}{8.3}=\frac{-10}{24}\)
Đặt biểu thức là A .
Ta có :
\(A=\left(\frac{1}{3}-1\right)\left(\frac{1}{6}-1\right)\left(\frac{1}{10}-1\right)...\left(\frac{1}{36}-1\right)\)
\(A=\frac{-2}{3}\cdot\frac{-5}{6}\cdot\frac{-9}{10}\cdot....\cdot\frac{-36}{36}\)
\(A=-\left(\frac{4}{6}\cdot\frac{10}{12}\cdot\frac{18}{20}\cdot...\cdot\frac{70}{72}\right)\)
\(A=-\left(\frac{1.4}{2.3}\cdot\frac{2.5}{3.4}\cdot\frac{3.6}{4.5}...\frac{7.10}{8.9}\right)\)
\(A=-\left(\frac{1.4.2.5.3.6...7.10}{2.3.3.4.4.5...8.9}\right)\)
\(A=-\frac{\left(1.2.3.4....7\right)\left(4.5.6....10\right)}{\left(2.3.4....8\right)\left(3.4.5....9\right)}\)
\(A=-\frac{1.10}{8.3}\)
\(A=\frac{-10}{24}\)
a) \(3x-18.28:14=308\)
\(=>3x-36=308\)
\(=>3x=344\)\(\)
\(=>x=\frac{344}{3}\)
\(\)b)\(38+\left|x\right|=\left(-12\right)+65\)
\(=>38+\left|x\right|=53=>\left|x\right|=15=>\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
c)\(15+3.\left(x-1\right):5=30\)
\(=>15+3.\left(x-1\right)=150\)
\(=>3.\left(x-1\right)=135\)
\(x-1=45=>x=46\)
d) \(5.\left(7-3x\right)+7.\left(2+2x\right)=1\)
\(=>35-15x+14+14x=1\)
\(=>49-x=1=>x=48\)
e)\(3.\left(x-7\right)=21\)
\(=>x-7=7=>x=14\)
g)\(\left[\left(6x-72\right):2-84\right]:28=5628\)
\(\left(6x-72\right):2-84=157584\)
\(\left(6x-72\right):2=157668\)
\(6x-72=315336\)
\(6x=315408=>x=52568\)
h)\(123-5\left(x+4\right)=28\)
\(5.\left(x+4\right)=95\)
\(x+4=19=>x=15\)
p)\(14.\left(x-3\right)-138=73\)
\(14.\left(x-3\right)=211\)
\(x-3=\frac{211}{14}=>x=\frac{253}{14}\)
\(t\)
\(\left|x\right|-5=2\)
\(\left|x\right|=7=>\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
v)\(4x-72=\left|100-8.25\right|\)
\(4x-72=\left|-100\right|\)
\(4x-72=100=>4x=172=>x=43\)
cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt ^^
a, (x2 - 3)(2 + 4x)
= 2x2 + 4x3 - 6 - 12x
b, 6(3x + 5)(x - 4)
= (18x + 30)(x - 4)
= 18x2 - 72 + 30x - 120
= 18x2 + 30x - 192
\(x^4+2x^3+3x^2+2x=y^2-y\)
\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)
\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)
Đến đây chắc khó.
'mà bươi' là mười ba
=13 con gà đập chết 3 con thì còn 10 con.
Đúng không bẹn
ĐKXĐ: \(x>0\)
Ta có: \(P\sqrt{x}=\left(\sqrt{x}+1\right)^2\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow x-4\sqrt{x}+4+\sqrt{x-4}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)
Vì \(\left(\sqrt{x}-2\right)^2\ge0;\sqrt{x-4}\ge0\forall x\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}\ge0\forall x\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow x=4\) ( tm )
Vậy...
a) \(\left(a-b\right)^2=3\)\(\Rightarrow a^2-2ab+b^2=3\)
mà \(a^2+b^2=8\)\(\Rightarrow8-2ab=3\)
\(\Rightarrow2ab=5\)\(\Rightarrow ab=\frac{5}{2}\)
Vậy \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
mà \(a-b=2\)và \(a+b=4\)
\(\Rightarrow a^2-b^2=2.4=8\)
Vậy \(a^2-b^2=8\)
a) Ta có: \(\hept{\begin{cases}a^2+b^2=8\\\left(a-b\right)^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=8\\a^2-2ab+b^2=3\end{cases}}\)
=> \(a^2+b^2-\left(a^2-2ab+b^2\right)=8-3\)
<=> \(2ab=5\)
=> \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)=2.4=8\)
lm lộn đề nên hơi chậm xíu^^
a, \(\overline{xx}+x+5=125\)
\(x\times11+x=120\)
\(x\left(1+11\right)=120\)
\(x=120\div12\)
\(x=10\)
Vậy x = 10
\(\overline{xxx}+\overline{xx}+x+x=992\)
\(x\times111+x\times11+x\times2=992\)
\(x\left(111+11+2\right)=992\)
\(x=992\div124\)
\(x=8\)
Vậy x = 8
\(4725+\overline{xxx}+\overline{xx}+x=54909\)
\(x\times111+x\times11+x=50184\)
\(x\left(111+11+1\right)=50184\)
\(x\times123=50184\)
\(x=408\)
Vậy x = 408
b, \(\overline{xxx}-\overline{xx}-x-25=4430\)
\(x\times111-x\times11-x=4455\)
\(x\left(111-11-1\right)=4455\)
\(x=4455\div99\)
\(x=45\)
Vậy x = 45
\(\overline{xxx}+\overline{xx}+x+x+x+1=1001\)
\(x\times111+x\times11+x\times3=1000\)
\(x\left(111+11+3\right)=1000\)
\(x=1000\div125\)
\(x=8\)
Vậy x = 8
\(35655-\overline{xxx}-\overline{xx}-x=5274\)
\(x\times111+x\times11+x=30381\)
\(x\left(111+11+1\right)=30381\)
\(x=30381\div123\)\
\(x=247\)
Vậy \(x=247\)